亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we focus on a realistic yet challenging task, Single Domain Generalization Object Detection (S-DGOD), where only one source domain's data can be used for training object detectors, but have to generalize multiple distinct target domains. In S-DGOD, both high-capacity fitting and generalization abilities are needed due to the task's complexity. Differentiable Neural Architecture Search (NAS) is known for its high capacity for complex data fitting and we propose to leverage Differentiable NAS to solve S-DGOD. However, it may confront severe over-fitting issues due to the feature imbalance phenomenon, where parameters optimized by gradient descent are biased to learn from the easy-to-learn features, which are usually non-causal and spuriously correlated to ground truth labels, such as the features of background in object detection data. Consequently, this leads to serious performance degradation, especially in generalizing to unseen target domains with huge domain gaps between the source domain and target domains. To address this issue, we propose the Generalizable loss (G-loss), which is an OoD-aware objective, preventing NAS from over-fitting by using gradient descent to optimize parameters not only on a subset of easy-to-learn features but also the remaining predictive features for generalization, and the overall framework is named G-NAS. Experimental results on the S-DGOD urban-scene datasets demonstrate that the proposed G-NAS achieves SOTA performance compared to baseline methods. Codes are available at //github.com/wufan-cse/G-NAS.

相關內容

In this paper, we present the solution to the Emotional Mimicry Intensity (EMI) Estimation challenge, which is part of 6th Affective Behavior Analysis in-the-wild (ABAW) Competition.The EMI Estimation challenge task aims to evaluate the emotional intensity of seed videos by assessing them from a set of predefined emotion categories (i.e., "Admiration", "Amusement", "Determination", "Empathic Pain", "Excitement" and "Joy"). To tackle this challenge, we extracted rich dual-channel visual features based on ResNet18 and AUs for the video modality and effective single-channel features based on Wav2Vec2.0 for the audio modality. This allowed us to obtain comprehensive emotional features for the audiovisual modality. Additionally, leveraging a late fusion strategy, we averaged the predictions of the visual and acoustic models, resulting in a more accurate estimation of audiovisual emotional mimicry intensity. Experimental results validate the effectiveness of our approach, with the average Pearson's correlation Coefficient($\rho$) across the 6 emotion dimensionson the validation set achieving 0.3288.

Recent advances in visual reasoning (VR), particularly with the aid of Large Vision-Language Models (VLMs), show promise but require access to large-scale datasets and face challenges such as high computational costs and limited generalization capabilities. Compositional visual reasoning approaches have emerged as effective strategies; however, they heavily rely on the commonsense knowledge encoded in Large Language Models (LLMs) to perform planning, reasoning, or both, without considering the effect of their decisions on the visual reasoning process, which can lead to errors or failed procedures. To address these challenges, we introduce HYDRA, a multi-stage dynamic compositional visual reasoning framework designed for reliable and incrementally progressive general reasoning. HYDRA integrates three essential modules: a planner, a Reinforcement Learning (RL) agent serving as a cognitive controller, and a reasoner. The planner and reasoner modules utilize an LLM to generate instruction samples and executable code from the selected instruction, respectively, while the RL agent dynamically interacts with these modules, making high-level decisions on selection of the best instruction sample given information from the historical state stored through a feedback loop. This adaptable design enables HYDRA to adjust its actions based on previous feedback received during the reasoning process, leading to more reliable reasoning outputs and ultimately enhancing its overall effectiveness. Our framework demonstrates state-of-the-art performance in various VR tasks on four different widely-used datasets.

In this paper, we address the challenge of image resolution variation for the Segment Anything Model (SAM). SAM, known for its zero-shot generalizability, exhibits a performance degradation when faced with datasets with varying image sizes. Previous approaches tend to resize the image to a fixed size or adopt structure modifications, hindering the preservation of SAM's rich prior knowledge. Besides, such task-specific tuning necessitates a complete retraining of the model, which is cost-expensive and unacceptable for deployment in the downstream tasks. In this paper, we reformulate this issue as a length extrapolation problem, where token sequence length varies while maintaining a consistent patch size for images of different sizes. To this end, we propose Scalable Bias-Mode Attention Mask (BA-SAM) to enhance SAM's adaptability to varying image resolutions while eliminating the need for structure modifications. Firstly, we introduce a new scaling factor to ensure consistent magnitude in the attention layer's dot product values when the token sequence length changes. Secondly, we present a bias-mode attention mask that allows each token to prioritize neighboring information, mitigating the impact of untrained distant information. Our BA-SAM demonstrates efficacy in two scenarios: zero-shot and fine-tuning. Extensive evaluation on diverse datasets, including DIS5K, DUTS, ISIC, COD10K, and COCO, reveals its ability to significantly mitigate performance degradation in the zero-shot setting and achieve state-of-the-art performance with minimal fine-tuning. Furthermore, we propose a generalized model and benchmark, showcasing BA-SAM's generalizability across all four datasets simultaneously.

Test-Time Training (TTT) proposes to adapt a pre-trained network to changing data distributions on-the-fly. In this work, we propose the first TTT method for 3D semantic segmentation, TTT-KD, which models Knowledge Distillation (KD) from foundation models (e.g. DINOv2) as a self-supervised objective for adaptation to distribution shifts at test-time. Given access to paired image-pointcloud (2D-3D) data, we first optimize a 3D segmentation backbone for the main task of semantic segmentation using the pointclouds and the task of 2D $\to$ 3D KD by using an off-the-shelf 2D pre-trained foundation model. At test-time, our TTT-KD updates the 3D segmentation backbone for each test sample, by using the self-supervised task of knowledge distillation, before performing the final prediction. Extensive evaluations on multiple indoor and outdoor 3D segmentation benchmarks show the utility of TTT-KD, as it improves performance for both in-distribution (ID) and out-of-distribution (ODO) test datasets. We achieve a gain of up to 13% mIoU (7% on average) when the train and test distributions are similar and up to 45% (20% on average) when adapting to OOD test samples.

In this work, we introduce the Virtual In-Hand Eye Transformer (VIHE), a novel method designed to enhance 3D manipulation capabilities through action-aware view rendering. VIHE autoregressively refines actions in multiple stages by conditioning on rendered views posed from action predictions in the earlier stages. These virtual in-hand views provide a strong inductive bias for effectively recognizing the correct pose for the hand, especially for challenging high-precision tasks such as peg insertion. On 18 manipulation tasks in RLBench simulated environments, VIHE achieves a new state-of-the-art, with a 12% absolute improvement, increasing from 65% to 77% over the existing state-of-the-art model using 100 demonstrations per task. In real-world scenarios, VIHE can learn manipulation tasks with just a handful of demonstrations, highlighting its practical utility. Videos and code implementation can be found at our project site: //vihe-3d.github.io.

Code Large Language Models (CodeLLMs) have demonstrated impressive proficiency in code completion tasks. However, they often fall short of fully understanding the extensive context of a project repository, such as the intricacies of relevant files and class hierarchies, which can result in less precise completions. To overcome these limitations, we present \tool, a multifaceted framework designed to address the complex challenges associated with repository-level code completion. Central to \tool is the {\em Repo-level Semantic Graph} (RSG), a novel semantic graph structure that encapsulates the vast context of code repositories. Furthermore, RepoHyper leverages \textit{Expand and Refine} retrieval method, including a graph expansion and a link prediction algorithm applied to the RSG, enabling the effective retrieval and prioritization of relevant code snippets. Our evaluations show that \tool markedly outperforms existing techniques in repository-level code completion, showcasing enhanced accuracy across various datasets when compared to several strong baselines. Our implementation of RepoHyper can be found at~\url{//github.com/FSoft-AI4Code/RepoHyper}.

In this paper, we delve into the advancement of domain-specific Large Language Models (LLMs) with a focus on their application in software development. We introduce DevAssistLlama, a model developed through instruction tuning, to assist developers in processing software-related natural language queries. This model, a variant of instruction tuned LLM, is particularly adept at handling intricate technical documentation, enhancing developer capability in software specific tasks. The creation of DevAssistLlama involved constructing an extensive instruction dataset from various software systems, enabling effective handling of Named Entity Recognition (NER), Relation Extraction (RE), and Link Prediction (LP). Our results demonstrate DevAssistLlama's superior capabilities in these tasks, in comparison with other models including ChatGPT. This research not only highlights the potential of specialized LLMs in software development also the pioneer LLM for this domain.

We address the problem of generating realistic 3D human-object interactions (HOIs) driven by textual prompts. To this end, we take a modular design and decompose the complex task into simpler sub-tasks. We first develop a dual-branch diffusion model (HOI-DM) to generate both human and object motions conditioned on the input text, and encourage coherent motions by a cross-attention communication module between the human and object motion generation branches. We also develop an affordance prediction diffusion model (APDM) to predict the contacting area between the human and object during the interactions driven by the textual prompt. The APDM is independent of the results by the HOI-DM and thus can correct potential errors by the latter. Moreover, it stochastically generates the contacting points to diversify the generated motions. Finally, we incorporate the estimated contacting points into the classifier-guidance to achieve accurate and close contact between humans and objects. To train and evaluate our approach, we annotate BEHAVE dataset with text descriptions. Experimental results on BEHAVE and OMOMO demonstrate that our approach produces realistic HOIs with various interactions and different types of objects.

Visual understanding of the world goes beyond the semantics and flat structure of individual images. In this work, we aim to capture both the 3D structure and dynamics of real-world scenes from monocular real-world videos. Our Dynamic Scene Transformer (DyST) model leverages recent work in neural scene representation to learn a latent decomposition of monocular real-world videos into scene content, per-view scene dynamics, and camera pose. This separation is achieved through a novel co-training scheme on monocular videos and our new synthetic dataset DySO. DyST learns tangible latent representations for dynamic scenes that enable view generation with separate control over the camera and the content of the scene.

In this work, we present ThermoHands, a new benchmark for thermal image-based egocentric 3D hand pose estimation, aimed at overcoming challenges like varying lighting and obstructions (e.g., handwear). The benchmark includes a diverse dataset from 28 subjects performing hand-object and hand-virtual interactions, accurately annotated with 3D hand poses through an automated process. We introduce a bespoken baseline method, TheFormer, utilizing dual transformer modules for effective egocentric 3D hand pose estimation in thermal imagery. Our experimental results highlight TheFormer's leading performance and affirm thermal imaging's effectiveness in enabling robust 3D hand pose estimation in adverse conditions.

北京阿比特科技有限公司