亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most digital bodily games focus on the body as they use movement as input. However, they also draw the player's focus away from the body as the output occurs on visual displays, creating a divide between the physical body and the virtual world. We propose a novel approach - the ''Body as a Play Material'' - where a player uses their body as both input and output to unify the physical body and the virtual world. To showcase this approach, we designed three games where a player uses one of their hands (input) to play against the other hand (output) by loaning control over its movements to an Electrical Muscle Stimulation (EMS) system. We conducted a thematic analysis on the data obtained from a field study with 12 participants to articulate four player experience themes. We discuss our results about how participants appreciated the engagement with the variety of bodily movements for play and the ambiguity of using their body as a play material. Ultimately, our work aims to unify the physical body and the virtual world.

相關內容

醫學人工智能AIM(Artificial Intelligence in Medicine)雜志發表了多學科領域的原創文章,涉及醫學中的人工智能理論和實踐,以醫學為導向的人類生物學和衛生保健。醫學中的人工智能可以被描述為與研究、項目和應用相關的科學學科,旨在通過基于知識或數據密集型的計算機解決方案支持基于決策的醫療任務,最終支持和改善人類護理提供者的性能。 官網地址:

Point-of-Interest (POI) recommendation plays a vital role in various location-aware services. It has been observed that POI recommendation is driven by both sequential and geographical influences. However, since there is no annotated label of the dominant influence during recommendation, existing methods tend to entangle these two influences, which may lead to sub-optimal recommendation performance and poor interpretability. In this paper, we address the above challenge by proposing DisenPOI, a novel Disentangled dual-graph framework for POI recommendation, which jointly utilizes sequential and geographical relationships on two separate graphs and disentangles the two influences with self-supervision. The key novelty of our model compared with existing approaches is to extract disentangled representations of both sequential and geographical influences with contrastive learning. To be specific, we construct a geographical graph and a sequential graph based on the check-in sequence of a user. We tailor their propagation schemes to become sequence-/geo-aware to better capture the corresponding influences. Preference proxies are extracted from check-in sequence as pseudo labels for the two influences, which supervise the disentanglement via a contrastive loss. Extensive experiments on three datasets demonstrate the superiority of the proposed model.

Recent breakthroughs in NLP largely increased the presence of ASR systems in our daily lives. However, for many low-resource languages, ASR models still need to be improved due in part to the difficulty of acquiring pertinent data. This project aims to help advance research in ASR models for Swiss German dialects, by providing insights about the performance of state-of-the-art ASR models on recently published Swiss German speech datasets. We propose a novel loss that takes into account the semantic distance between the predicted and the ground-truth labels. We outperform current state-of-the-art results by fine-tuning OpenAI's Whisper model on Swiss-German datasets.

Software applications play an increasingly critical role in various aspects of our lives, from communication and entertainment to business and healthcare. As these applications become more pervasive, the importance of considering human values in software development has gained significant attention. In this preliminary study, we investigate developers's perceptions and experiences related to human values, with a focus on the human value of transparency. We interviewed five experienced developers and conducted thematic analysis to explore how developers perceive transparency, violations of transparency, and the process of fixing reported violations of transparency. Our findings reveal the significance of transparency as a fundamental value in software development, with developers recognising its importance for building trust, promoting accountability, and fostering ethical practices. Developers recognise the negative consequences of the violation of the human value of transparency and follow a systematic process to fix reported violations. This includes investigation, root cause analysis, corrective action planning, collaborative problem-solving, and testing and verification. These preliminary findings contribute to the understanding of transparency in software development and provide insights for promoting ethical practices.

Community Question Answering (CQA) platforms steadily gain popularity as they provide users with fast responses to their queries. The swiftness of these responses is contingent on a mixture of query-specific and user-related elements. This paper scrutinizes these contributing factors within the context of six highly popular CQA platforms, identified through their standout answering speed. Our investigation reveals a correlation between the time taken to yield the first response to a question and several variables: the metadata, the formulation of the questions, and the level of interaction among users. Additionally, by employing conventional machine learning models to analyze these metadata and patterns of user interaction, we endeavor to predict which queries will receive their initial responses promptly.

The National Basketball Association (NBA) imposes a player salary cap. It is therefore useful to develop tools to measure the relative realized return of a player's salary given their on court performance. Very few such studies exist, however. We thus present the first known framework to estimate a return on investment (ROI) for NBA player contracts. The framework operates in five parts: (1) decide on a measurement time horizon, such as the standard 82-game NBA regular season; (2) calculate the novel game contribution percentage (GCP) measure we propose, which is a single game summary statistic that sums to unity for each competing team and is comprised of traditional, playtype, hustle, box outs, defensive, tracking, and rebounding per game NBA statistics; (3) estimate the single game value (SGV) of each regular season NBA game using a standard currency conversion calculation; (4) multiply the SGV by the vector of realized GCPs to obtain a series of realized per-player single season cash flows; and (5) use the player salary as an initial investment to perform the traditional ROI calculation. We illustrate our framework by compiling a novel, sharable dataset of per game GCP statistics and salaries for the 2022-2023 NBA regular season. A scatter plot of ROI by salary for all players is presented, including the top and bottom 50 performers. Notably, missed games are treated as defaults because GCP is a per game metric. This allows for break-even calculations between high-performing players with frequent missed games and average performers with few missed games, which we demonstrate with a comparison of the 2023 NBA regular seasons of Anthony Davis and Brook Lopez. We conclude by suggesting uses of our framework, discussing its flexibility through customization, and outlining potential future improvements.

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司