Despite the impressive advancements achieved through vision-and-language pretraining, it remains unclear whether this joint learning paradigm can help understand each individual modality. In this work, we conduct a comparative analysis of the visual representations in existing vision-and-language models and vision-only models by probing a broad range of tasks, aiming to assess the quality of the learned representations in a nuanced manner. Interestingly, our empirical observations suggest that vision-and-language models are better at label prediction tasks like object and attribute prediction, while vision-only models are stronger at dense prediction tasks that require more localized information. We hope our study sheds light on the role of language in visual learning, and serves as an empirical guide for various pretrained models. Code will be released at //github.com/Lizw14/visual_probing
Research in decoding visual information from the brain, particularly through the non-invasive fMRI method, is rapidly progressing. The challenge arises from the limited data availability and the low signal-to-noise ratio of fMRI signals, leading to a low-precision task of fMRI-to-image retrieval. State-of-the-art MindEye remarkably improves fMRI-to-image retrieval performance by leveraging a deep MLP with a high parameter count orders of magnitude, i.e., a 996M MLP Backbone per subject, to align fMRI embeddings to the final hidden layer of CLIP's vision transformer. However, significant individual variations exist among subjects, even within identical experimental setups, mandating the training of subject-specific models. The substantial parameters pose significant challenges in deploying fMRI decoding on practical devices, especially with the necessitating of specific models for each subject. To this end, we propose Lite-Mind, a lightweight, efficient, and versatile brain representation network based on discrete Fourier transform, that efficiently aligns fMRI voxels to fine-grained information of CLIP. Our experiments demonstrate that Lite-Mind achieves an impressive 94.3% fMRI-to-image retrieval accuracy on the NSD dataset for Subject 1, with 98.7% fewer parameters than MindEye. Lite-Mind is also proven to be able to be migrated to smaller brain datasets and establishes a new state-of-the-art for zero-shot classification on the GOD dataset. The code is available at //github.com/gongzix/Lite-Mind.
With appropriate data selection and training techniques, Large Language Models (LLMs) have demonstrated exceptional success in various medical examinations and multiple-choice questions. However, the application of LLMs in medical dialogue generation-a task more closely aligned with actual medical practice-has been less explored. This gap is attributed to the insufficient medical knowledge of LLMs, which leads to inaccuracies and hallucinated information in the generated medical responses. In this work, we introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding (MedKP) framework, which integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions. Evaluated with comprehensive metrics, our experiments on two large-scale, real-world online medical consultation datasets (MedDG and KaMed) demonstrate that MedKP surpasses multiple baselines and mitigates the incidence of hallucinations, achieving a new state-of-the-art. Extensive ablation studies further reveal the effectiveness of each component of MedKP. This enhancement advances the development of reliable, automated medical consultation responses using LLMs, thereby broadening the potential accessibility of precise and real-time medical assistance.
Token-based text-to-speech (TTS) models have emerged as a promising avenue for generating natural and realistic speech, yet they grapple with low pronunciation accuracy, speaking style and timbre inconsistency, and a substantial need for diverse training data. In response, we introduce a novel hierarchical acoustic modeling approach complemented by a tailored data augmentation strategy and train it on the combination of real and synthetic data, scaling the data size up to 650k hours, leading to the zero-shot TTS model with 0.8B parameters. Specifically, our method incorporates a latent variable sequence containing supplementary acoustic information based on refined self-supervised learning (SSL) discrete units into the TTS model by a predictor. This significantly mitigates pronunciation errors and style mutations in synthesized speech. During training, we strategically replace and duplicate segments of the data to enhance timbre uniformity. Moreover, a pretrained few-shot voice conversion model is utilized to generate a plethora of voices with identical content yet varied timbres. This facilitates the explicit learning of utterance-level one-to-many mappings, enriching speech diversity and also ensuring consistency in timbre. Comparative experiments (Demo page: //anonymous.4open.science/w/ham-tts/)demonstrate our model's superiority over VALL-E in pronunciation precision and maintaining speaking style, as well as timbre continuity.
Human decision-making in real-life deviates significantly from the optimal decisions made by fully rational agents, primarily due to computational limitations or psychological biases. While existing studies in behavioral finance have discovered various aspects of human sub-rationality, there lacks a comprehensive framework to transfer these findings into an adaptive human model applicable across diverse financial market scenarios. In this study, we introduce a flexible model that incorporates five different aspects of human sub-rationality using reinforcement learning. Our model is trained using a high-fidelity multi-agent market simulator, which overcomes limitations associated with the scarcity of labeled data of individual investors. We evaluate the behavior of sub-rational human investors using hand-crafted market scenarios and SHAP value analysis, showing that our model accurately reproduces the observations in the previous studies and reveals insights of the driving factors of human behavior. Finally, we explore the impact of sub-rationality on the investor's Profit and Loss (PnL) and market quality. Our experiments reveal that bounded-rational and prospect-biased human behaviors improve liquidity but diminish price efficiency, whereas human behavior influenced by myopia, optimism, and pessimism reduces market liquidity.
In this work, we introduce DeepIPC, a novel end-to-end model tailored for autonomous driving, which seamlessly integrates perception and control tasks. Unlike traditional models that handle these tasks separately, DeepIPC innovatively combines a perception module, which processes RGBD images for semantic segmentation and generates bird's eye view (BEV) mappings, with a controller module that utilizes these insights along with GNSS and angular speed measurements to accurately predict navigational waypoints. This integration allows DeepIPC to efficiently translate complex environmental data into actionable driving commands. Our comprehensive evaluation demonstrates DeepIPC's superior performance in terms of drivability and multi-task efficiency across diverse real-world scenarios, setting a new benchmark for end-to-end autonomous driving systems with a leaner model architecture. The experimental results underscore DeepIPC's potential to significantly enhance autonomous vehicular navigation, promising a step forward in the development of autonomous driving technologies. For further insights and replication, we will make our code and datasets available at //github.com/oskarnatan/DeepIPC.
Optimal decision-making presents a significant challenge for autonomous systems operating in uncertain, stochastic and time-varying environments. Environmental variability over time can significantly impact the system's optimal decision making strategy for mission completion. To model such environments, our work combines the previous notion of Time-Varying Markov Decision Processes (TVMDP) with partial observability and introduces Time-Varying Partially Observable Markov Decision Processes (TV-POMDP). We propose a two-pronged approach to accurately estimate and plan within the TV-POMDP: 1) Memory Prioritized State Estimation (MPSE), which leverages weighted memory to provide more accurate time-varying transition estimates; and 2) an MPSE-integrated planning strategy that optimizes long-term rewards while accounting for temporal constraint. We validate the proposed framework and algorithms using simulations and hardware, with robots exploring a partially observable, time-varying environments. Our results demonstrate superior performance over standard methods, highlighting the framework's effectiveness in stochastic, uncertain, time-varying domains.
In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.