In this paper, we propose a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) and energy buffer aided multiple-input single-output (MISO) simultaneous wireless information and power transfer (SWIPT) non-orthogonal multiple access (NOMA) system, which consists of a STAR-RIS, an access point (AP), and reflection users and transmission users with energy buffers. In the proposed system, the multi-antenna AP can transmit information and energy to several single-antenna reflection and transmission users simultaneously in a NOMA fashion, where the power transfer and information transmission states of the users are modeled using Markov chains. The reflection and transmission users harvest and store the energy in energy buffers as additional power supplies. The power outage probability, information outage probability, sum throughput, and joint outage probability closed-form expressions of the proposed system are derived over Nakagami-m fading channels, which are validated via simulations. Results demonstrate that the proposed system achieves better performance in comparison to the STAR-RIS aided MISO SWIPT-NOMA buffer-less, conventional RIS and energy buffer aided MISO SWIPT-NOMA, and STAR-RIS and energy buffer aided MISO SWIPT-time-division multiple access (TDMA) systems. Furthermore, a particle swarm optimization based power allocation (PSO-PA) algorithm is designed to maximize the sum throughput with a constraint on the joint outage probability. Simulation results illustrate that the proposed PSO-PA algorithm can achieve an improved sum throughput performance of the proposed system.
In this paper, we discuss adaptive approximations of an elliptic eigenvalue optimization problem in a phase-field setting by a conforming finite element method. An adaptive algorithm is proposed and implemented in several two dimensional numerical examples for illustration of efficiency and accuracy. Theoretical findings consist in the vanishing limit of a subsequence of estimators and the convergence of the relevant subsequence of adaptively-generated solutions to a solution to the continuous optimality system.
In this paper, we introduce strategies for developing private Key Information Extraction (KIE) systems by leveraging large pretrained document foundation models in conjunction with differential privacy (DP), federated learning (FL), and Differentially Private Federated Learning (DP-FL). Through extensive experimentation on six benchmark datasets (FUNSD, CORD, SROIE, WildReceipts, XFUND, and DOCILE), we demonstrate that large document foundation models can be effectively fine-tuned for the KIE task under private settings to achieve adequate performance while maintaining strong privacy guarantees. Moreover, by thoroughly analyzing the impact of various training and model parameters on model performance, we propose simple yet effective guidelines for achieving an optimal privacy-utility trade-off for the KIE task under global DP. Finally, we introduce FeAm-DP, a novel DP-FL algorithm that enables efficiently upscaling global DP from a standalone context to a multi-client federated environment. We conduct a comprehensive evaluation of the algorithm across various client and privacy settings, and demonstrate its capability to achieve comparable performance and privacy guarantees to standalone DP, even when accommodating an increasing number of participating clients. Overall, our study offers valuable insights into the development of private KIE systems, and highlights the potential of document foundation models for privacy-preserved Document AI applications. To the best of authors' knowledge, this is the first work that explores privacy preserved document KIE using document foundation models.
In this paper, we propose a method to estimate the exact location of a camera in a cyber-physical system using the exact geographic coordinates of four feature points stored in QR codes(Quick response codes) and the pixel coordinates of four feature points analyzed from the QR code images taken by the camera. Firstly, the P4P(Perspective 4 Points) algorithm is designed to uniquely determine the initial pose estimation value of the QR coordinate system relative to the camera coordinate system by using the four feature points of the selected QR code. In the second step, the manifold gradient optimization algorithm is designed. The rotation matrix and displacement vector are taken as the initial values of iteration, and the iterative optimization is carried out to improve the positioning accuracy and obtain the rotation matrix and displacement vector with higher accuracy. The third step is to convert the pose of the QR coordinate system with respect to the camera coordinate system to the pose of the AGV(Automated Guided Vehicle) with respect to the world coordinate system. Finally, the performance of manifold gradient optimization algorithm and P4P analytical algorithm are simulated and compared under the same conditions.One can see that the performance of the manifold gradient optimization algorithm proposed in this paper is much better than that of the P4P analytic algorithm when the signal-to-noise ratio is small.With the increase of the signal-to-noise ratio,the performance of the P4P analytic algorithm approaches that of the manifold gradient optimization algorithm.when the noise is same,the performance of manifold gradient optimization algorithm is better when there are more feature points.
In this paper, we propose a new method, called DoubleCoverUDF, for extracting the zero level-set from unsigned distance fields (UDFs). DoubleCoverUDF takes a learned UDF and a user-specified parameter $r$ (a small positive real number) as input and extracts an iso-surface with an iso-value $r$ using the conventional marching cubes algorithm. We show that the computed iso-surface is the boundary of the $r$-offset volume of the target zero level-set $S$, which is an orientable manifold, regardless of the topology of $S$. Next, the algorithm computes a covering map to project the boundary mesh onto $S$, preserving the mesh's topology and avoiding folding. If $S$ is an orientable manifold surface, our algorithm separates the double-layered mesh into a single layer using a robust minimum-cut post-processing step. Otherwise, it keeps the double-layered mesh as the output. We validate our algorithm by reconstructing 3D surfaces of open models and demonstrate its efficacy and effectiveness on synthetic models and benchmark datasets. Our experimental results confirm that our method is robust and produces meshes with better quality in terms of both visual evaluation and quantitative measures than existing UDF-based methods. The source code is available at //github.com/jjjkkyz/DCUDF.
In this paper, we present a probability graph-based semantic information compression system for scenarios where the base station (BS) and the user share common background knowledge. We employ probability graphs to represent the shared knowledge between the communicating parties. During the transmission of specific text data, the BS first extracts semantic information from the text, which is represented by a knowledge graph. Subsequently, the BS omits certain relational information based on the shared probability graph to reduce the data size. Upon receiving the compressed semantic data, the user can automatically restore missing information using the shared probability graph and predefined rules. This approach brings additional computational resource consumption while effectively reducing communication resource consumption. Considering the limitations of wireless resources, we address the problem of joint communication and computation resource allocation design, aiming at minimizing the total communication and computation energy consumption of the network while adhering to latency, transmit power, and semantic constraints. Simulation results demonstrate the effectiveness of the proposed system.
In this paper, we consider an indoor hybrid visible light communication (VLC) and radio frequency (RF) communication scenario with two-hop downlink transmission. The LED carries both data and energy in the first phase, VLC, to an energy harvester relay node, which then uses the harvested energy to re-transmit the decoded information to the RF user in the second phase, RF communication. The direct current (DC) bias and the assigned time duration for VLC transmission are taken into account as design parameters. The optimization problem is formulated to maximize the data rate with the assumption of decode-and-forward relaying for fixed receiver orientation. The non-convex optimization is split into two sub-problems and solved cyclically. It optimizes the data rate by solving two sub-problems: fixing time duration for VLC link to solve DC bias and fixing DC bias to solve time duration. The effect of random receiver orientation on the data rate is also studied, and closed-form expressions for both VLC and RF data rates are derived. The optimization is solved through an exhaustive search, and the results show that a higher data rate can be achieved by solving the joint problem of DC bias and time duration compared to solely optimizing the DC bias.
In this paper, we introduce a new heuristics for global optimization in scenarios where extensive evaluations of the cost function are expensive, inaccessible, or even prohibitive. The method, which we call Landscape-Sketch-and-Step (LSS), combines Machine Learning, Stochastic Optimization, and Reinforcement Learning techniques, relying on historical information from previously sampled points to make judicious choices of parameter values where the cost function should be evaluated at. Unlike optimization by Replica Exchange Monte Carlo methods, the number of evaluations of the cost function required in this approach is comparable to that used by Simulated Annealing, quality that is especially important in contexts like high-throughput computing or high-performance computing tasks, where evaluations are either computationally expensive or take a long time to be performed. The method also differs from standard Surrogate Optimization techniques, for it does not construct a surrogate model that aims at approximating or reconstructing the objective function. We illustrate our method by applying it to low dimensional optimization problems (dimensions 1, 2, 4, and 8) that mimick known difficulties of minimization on rugged energy landscapes often seen in Condensed Matter Physics, where cost functions are rugged and plagued with local minima. When compared to classical Simulated Annealing, the LSS shows an effective acceleration of the optimization process.
In this paper, we hypothesize that gradient-based meta-learning (GBML) implicitly suppresses the Hessian along the optimization trajectory in the inner loop. Based on this hypothesis, we introduce an algorithm called SHOT (Suppressing the Hessian along the Optimization Trajectory) that minimizes the distance between the parameters of the target and reference models to suppress the Hessian in the inner loop. Despite dealing with high-order terms, SHOT does not increase the computational complexity of the baseline model much. It is agnostic to both the algorithm and architecture used in GBML, making it highly versatile and applicable to any GBML baseline. To validate the effectiveness of SHOT, we conduct empirical tests on standard few-shot learning tasks and qualitatively analyze its dynamics. We confirm our hypothesis empirically and demonstrate that SHOT outperforms the corresponding baseline. Code is available at: //github.com/JunHoo-Lee/SHOT
In this work, we present novel protocols over rings for semi-honest secure three-party computation (3-PC) and malicious four-party computation (4-PC) with one corruption. Compared to state-of-the-art protocols in the same setting, our protocols require fewer low-latency and high-bandwidth links between the parties to achieve high throughput. Our protocols also reduce the computational complexity by requiring up to 50 percent fewer basic instructions per gate. Further, our protocols achieve the currently best-known communication complexity (3/5 elements per multiplication gate) with an optional preprocessing phase to reduce the communication complexity of the online phase to 2/3 elements per multiplication gate. In homogeneous network settings, i.e. all links between the parties share similar network bandwidth and latency, our protocols achieve up to two times higher throughput than state-of-the-art protocols. In heterogeneous network settings, i.e. all links between the parties share different network bandwidth and latency, our protocols achieve even larger performance improvements. We implemented our protocols and multiple other state-of-the-art protocols in a novel open-source C++ framework optimized for achieving high throughput. All our protocols achieve more than one billion 32-bit multiplication or more than 40 billion AND gates per second. This is the highest throughput achieved in 3-PC and 4-PC so far and more than three orders of magnitude higher than the throughput MP-SPDZ achieves in the same settings.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.