亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an adaptive algorithm with one-sided error for the problem of junta testing for Boolean function under the challenging distribution-free setting, the query complexity of which is $\widetilde O(k)/\epsilon$. This improves the upper bound of $\widetilde O(k^2)/\epsilon$ by \cite{liu2019distribution}. From the $\Omega(k\log k)$ lower bound for junta testing under the uniform distribution by \cite{sauglam2018near}, our algorithm is nearly optimal. In the standard uniform distribution, the optimal junta testing algorithm is mainly designed by bridging between relevant variables and relevant blocks. At the heart of the analysis is the Efron-Stein orthogonal decomposition. However, it is not clear how to generalize this tool to the general setting. Surprisingly, we find that junta could be tested in a very simple and efficient way even in the distribution-free setting. It is interesting that the analysis does not rely on Fourier tools directly which are commonly used in junta testing.

相關內容

We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by $1$, we show that our algorithm only needs to explore $\tilde O( d^2\varepsilon^{-2})$ episodes to find an $\varepsilon$-optimal policy, where $d$ is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is ``horizon-free''. In addition, we provide an $\Omega(d^2\varepsilon^{-2})$ sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.

We consider decentralized optimization problems in which a number of agents collaborate to minimize the average of their local functions by exchanging over an underlying communication graph. Specifically, we place ourselves in an asynchronous model where only a random portion of nodes perform computation at each iteration, while the information exchange can be conducted between all the nodes and in an asymmetric fashion. For this setting, we propose an algorithm that combines gradient tracking with a network-level variance reduction (in contrast to variance reduction within each node). This enables each node to track the average of the gradients of the objective functions. Our theoretical analysis shows that the algorithm converges linearly, when the local objective functions are strongly convex, under mild connectivity conditions on the expected mixing matrices. In particular, our result does not require the mixing matrices to be doubly stochastic. In the experiments, we investigate a broadcast mechanism that transmits information from computing nodes to their neighbors, and confirm the linear convergence of our method on both synthetic and real-world datasets.

New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies.

Efficient exploration is critical in cooperative deep Multi-Agent Reinforcement Learning (MARL). In this paper, we propose an exploration method that efficiently encourages cooperative exploration based on the idea of the theoretically justified tree search algorithm UCT (Upper Confidence bounds applied to Trees). The high-level intuition is that to perform optimism-based exploration, agents would achieve cooperative strategies if each agent's optimism estimate captures a structured dependency relationship with other agents. At each node (i.e., action) of the search tree, UCT performs optimism-based exploration using a bonus derived by conditioning on the visitation count of its parent node. We provide a perspective to view MARL as tree search iterations and develop a method called Conditionally Optimistic Exploration (COE). We assume agents take actions following a sequential order, and consider nodes at the same depth of the search tree as actions of one individual agent. COE computes each agent's state-action value estimate with an optimistic bonus derived from the visitation count of the state and joint actions taken by agents up to the current agent. COE is adaptable to any value decomposition method for centralized training with decentralized execution. Experiments across various cooperative MARL benchmarks show that COE outperforms current state-of-the-art exploration methods on hard-exploration tasks.

Cross-validation techniques for risk estimation and model selection are widely used in statistics and machine learning. However, the understanding of the theoretical properties of learning via model selection with cross-validation risk estimation is quite low in face of its widespread use. In this context, this paper presents learning via model selection with cross-validation risk estimation as a general systematic learning framework within classical statistical learning theory and establishes distribution-free deviation bounds in terms of VC dimension, giving detailed proofs of the results and considering both bounded and unbounded loss functions. We also deduce conditions under which the deviation bounds of learning via model selection are tighter than that of learning via empirical risk minimization in the whole hypotheses space, supporting the better performance of model selection frameworks observed empirically in some instances.

The introduction of the European Union's (EU) set of comprehensive regulations relating to technology, the General Data Protection Regulation, grants EU citizens the right to explanations for automated decisions that have significant effects on their life. This poses a substantial challenge, as many of today's state-of-the-art algorithms are generally unexplainable black boxes. Simultaneously, we have seen an emergence of the fields of quantum computation and quantum AI. Due to the fickle nature of quantum information, the problem of explainability is amplified, as measuring a quantum system destroys the information. As a result, there is a need for post-hoc explanations for quantum AI algorithms. In the classical context, the cooperative game theory concept of the Shapley value has been adapted for post-hoc explanations. However, this approach does not translate to use in quantum computing trivially and can be exponentially difficult to implement if not handled with care. We propose a novel algorithm which reduces the problem of accurately estimating the Shapley values of a quantum algorithm into a far simpler problem of estimating the true average of a binomial distribution in polynomial time.

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

With the rising complexity of numerous novel applications that serve our modern society comes the strong need to design efficient computing platforms. Designing efficient hardware is, however, a complex multi-objective problem that deals with multiple parameters and their interactions. Given that there are a large number of parameters and objectives involved in hardware design, synthesizing all possible combinations is not a feasible method to find the optimal solution. One promising approach to tackle this problem is statistical modeling of a desired hardware performance. Here, we propose a model-based active learning approach to solve this problem. Our proposed method uses Bayesian models to characterize various aspects of hardware performance. We also use transfer learning and Gaussian regression bootstrapping techniques in conjunction with active learning to create more accurate models. Our proposed statistical modeling method provides hardware models that are sufficiently accurate to perform design space exploration as well as performance prediction simultaneously. We use our proposed method to perform design space exploration and performance prediction for various hardware setups, such as micro-architecture design and OpenCL kernels for FPGA targets. Our experiments show that the number of samples required to create performance models significantly reduces while maintaining the predictive power of our proposed statistical models. For instance, in our performance prediction setting, the proposed method needs 65% fewer samples to create the model, and in the design space exploration setting, our proposed method can find the best parameter settings by exploring less than 50 samples.

Our research deals with the optimization version of the set partition problem, where the objective is to minimize the absolute difference between the sums of the two disjoint partitions. Although this problem is known to be NP-hard and requires exponential time to solve, we propose a less demanding version of this problem where the goal is to find a locally optimal solution. In our approach, we consider the local optimality in respect to any movement of at most two elements. To accomplish this, we developed an algorithm that can generate a locally optimal solution in at most $O(N^2)$ time and $O(N)$ space. Our algorithm can handle arbitrary input precisions and does not require positive or integer inputs. Hence, it can be applied in various problem scenarios with ease.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

北京阿比特科技有限公司