亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emulators that can bypass computationally expensive scientific calculations with high accuracy and speed can enable new studies of fundamental science as well as more potential applications. In this work we discuss solving a system of constraint equations efficiently using a self-learning emulator. A self-learning emulator is an active learning protocol that can be used with any emulator that faithfully reproduces the exact solution at selected training points. The key ingredient is a fast estimate of the emulator error that becomes progressively more accurate as the emulator is improved, and the accuracy of the error estimate can be corrected using machine learning. We illustrate with three examples. The first uses cubic spline interpolation to find the solution of a transcendental equation with variable coefficients. The second example compares a spline emulator and a reduced basis method emulator to find solutions of a parameterized differential equation. The third example uses eigenvector continuation to find the eigenvectors and eigenvalues of a large Hamiltonian matrix that depends on several control parameters.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

We present an empirical study on the use of continual learning (CL) methods in a reinforcement learning (RL) scenario, which, to the best of our knowledge, has not been described before. CL is a very active recent research topic concerned with machine learning under non-stationary data distributions. Although this naturally applies to RL, the use of dedicated CL methods is still uncommon. This may be due to the fact that CL methods often assume a decomposition of CL problems into disjoint sub-tasks of stationary distribution, that the onset of these sub-tasks is known, and that sub-tasks are non-contradictory. In this study, we perform an empirical comparison of selected CL methods in a RL problem where a physically simulated robot must follow a racetrack by vision. In order to make CL methods applicable, we restrict the RL setting and introduce non-conflicting subtasks of known onset, which are however not disjoint and whose distribution, from the learner's point of view, is still non-stationary. Our results show that dedicated CL methods can significantly improve learning when compared to the baseline technique of "experience replay".

This paper presents a new methodology that combines a multiple criteria sorting or ranking method with a project portfolio selection procedure. The multicriteria method permits to compare projects in terms of their priority assessed on the basis of a set of both qualitative and quantitative criteria. Then, a feasible set of projects, i.e. a portfolio, is selected according to the priority defined by the multiple criteria method. In addition, the portfolio must satisfy a set of resources constraints, e.g. budget available, as well as some logical constraints, e.g. related to projects to be selected together or projects mutually exclusive. The proposed portfolio selection methodology can be applied in different contexts. We present an application in the urban planning domain where our approach allows to select a set of urban projects on the basis of their priority, budgetary constraints and urban policy requirements. Given the increasing interest of historical cities to reuse their cultural heritage, we applied and tested our methodology in this context. In particular, we show how the methodology can support the prioritization of the interventions on buildings with some historical value in the historic city center of Naples (Italy), taking into account several points of view.

The performance of Emergency Departments (EDs) is of great importance for any health care system, as they serve as the entry point for many patients. However, among other factors, the variability of patient acuity levels and corresponding treatment requirements of patients visiting EDs imposes significant challenges on decision makers. Balancing waiting times of patients to be first seen by a physician with the overall length of stay over all acuity levels is crucial to maintain an acceptable level of operational performance for all patients. To address those requirements when assigning idle resources to patients, several methods have been proposed in the past, including the Accumulated Priority Queuing (APQ) method. The APQ method linearly assigns priority scores to patients with respect to their time in the system and acuity level. Hence, selection decisions are based on a simple system representation that is used as an input for a selection function. This paper investigates the potential of an Machine Learning (ML) based patient selection method. It assumes that for a large set of training data, including a multitude of different system states, (near) optimal assignments can be computed by a (heuristic) optimizer, with respect to a chosen performance metric, and aims to imitate such optimal behavior when applied to new situations. Thereby, it incorporates a comprehensive state representation of the system and a complex non-linear selection function. The motivation for the proposed approach is that high quality selection decisions may depend on a variety of factors describing the current state of the ED, not limited to waiting times, which can be captured and utilized by the ML model. Results show that the proposed method significantly outperforms the APQ method for a majority of evaluated settings

Each year, deep learning demonstrates new and improved empirical results with deeper and wider neural networks. Meanwhile, with existing theoretical frameworks, it is difficult to analyze networks deeper than two layers without resorting to counting parameters or encountering sample complexity bounds that are exponential in depth. Perhaps it may be fruitful to try to analyze modern machine learning under a different lens. In this paper, we propose a novel information-theoretic framework with its own notions of regret and sample complexity for analyzing the data requirements of machine learning. With our framework, we first work through some classical examples such as scalar estimation and linear regression to build intuition and introduce general techniques. Then, we use the framework to study the sample complexity of learning from data generated by deep sign neural networks, deep ReLU neural networks, and deep networks that are infinitely wide but have a bounded sum of weights. For sign neural networks, we recover sample-complexity bounds that follow from VC-dimension based arguments. For the latter two neural network environments, we establish new results that suggest that the sample complexity of learning under these data generating processes is at most linear and quadratic, respectively, in network depth.

Adversarial Imitation Learning (AIL) is a class of popular state-of-the-art Imitation Learning algorithms where an artificial adversary's misclassification is used as a reward signal and is optimized by any standard Reinforcement Learning (RL) algorithm. Unlike most RL settings, the reward in AIL is differentiable but model-free RL algorithms do not make use of this property to train a policy. In contrast, we leverage the differentiability property of the AIL reward function and formulate a class of Actor Residual Critic (ARC) RL algorithms that draw a parallel to the standard Actor-Critic (AC) algorithms in RL literature and uses a residual critic, C function (instead of the standard Q function) to approximate only the discounted future return (excluding the immediate reward). ARC algorithms have similar convergence properties as the standard AC algorithms with the additional advantage that the gradient through the immediate reward is exact. For the discrete (tabular) case with finite states, actions, and known dynamics, we prove that policy iteration with $C$ function converges to an optimal policy. In the continuous case with function approximation and unknown dynamics, we experimentally show that ARC aided AIL outperforms standard AIL in simulated continuous-control and real robotic manipulation tasks. ARC algorithms are simple to implement and can be incorporated into any existing AIL implementation with an AC algorithm.

Gradient based meta-learning methods are prone to overfit on the meta-training set, and this behaviour is more prominent with large and complex networks. Moreover, large networks restrict the application of meta-learning models on low-power edge devices. While choosing smaller networks avoid these issues to a certain extent, it affects the overall generalization leading to reduced performance. Clearly, there is an approximately optimal choice of network architecture that is best suited for every meta-learning problem, however, identifying it beforehand is not straightforward. In this paper, we present MetaDOCK, a task-specific dynamic kernel selection strategy for designing compressed CNN models that generalize well on unseen tasks in meta-learning. Our method is based on the hypothesis that for a given set of similar tasks, not all kernels of the network are needed by each individual task. Rather, each task uses only a fraction of the kernels, and the selection of the kernels per task can be learnt dynamically as a part of the inner update steps. MetaDOCK compresses the meta-model as well as the task-specific inner models, thus providing significant reduction in model size for each task, and through constraining the number of active kernels for every task, it implicitly mitigates the issue of meta-overfitting. We show that for the same inference budget, pruned versions of large CNN models obtained using our approach consistently outperform the conventional choices of CNN models. MetaDOCK couples well with popular meta-learning approaches such as iMAML. The efficacy of our method is validated on CIFAR-fs and mini-ImageNet datasets, and we have observed that our approach can provide improvements in model accuracy of up to 2% on standard meta-learning benchmark, while reducing the model size by more than 75%.

The distributional reinforcement learning (RL) approach advocates for representing the complete probability distribution of the random return instead of only modelling its expectation. A distributional RL algorithm may be characterised by two main components, namely the representation of the distribution together with its parameterisation and the probability metric defining the loss. The present research work considers the unconstrained monotonic neural network (UMNN) architecture, a universal approximator of continuous monotonic functions which is particularly well suited for modelling different representations of a distribution (PDF, CDF, QF). This property enables the efficient decoupling of the effect of the function approximator class from that of the probability metric. The research paper firstly introduces a methodology for learning different representations of the random return distribution. Secondly, a novel distributional RL algorithm named unconstrained monotonic deep Q-network (UMDQN) is presented. Lastly, in light of this new algorithm, an empirical comparison is performed between three probability quasimetrics, namely the Kullback-Leibler divergence, Cramer distance, and Wasserstein distance. The results highlight the main strengths and weaknesses associated with each probability metric together with an important limitation of the Wasserstein distance. This research concludes by calling for a reconsideration of all probability metrics in distributional RL, contrasting with the clear dominance of the Wasserstein distance in recent publications.

Lately, studying social dynamics in interacting agents has been boosted by the power of computer models, which bring the richness of qualitative work, while offering the precision, transparency, extensiveness, and replicability of statistical and mathematical approaches. A particular set of phenomena for the study of social dynamics is Web collaborative platforms. A dataset of interest is r/place, a collaborative social experiment held in 2017 on Reddit, which consisted of a shared online canvas of 1000 pixels by 1000 pixels co-edited by over a million recorded users over 72 hours. In this paper, we designed and compared two methods to analyze the dynamics of this experiment. Our first method consisted in approximating the set of 2D cellular-automata-like rules used to generate the canvas images and how these rules change over time. The second method consisted in a convolutional neural network (CNN) that learned an approximation to the generative rules in order to generate the complex outcomes of the canvas. Our results indicate varying context-size dependencies for the predictability of different objects in r/place in time and space. They also indicate a surprising peak in difficulty to statistically infer behavioral rules towards the middle of the social experiment, while user interactions did not drop until before the end. The combination of our two approaches, one rule-based and the other statistical CNN-based, shows the ability to highlight diverse aspects of analyzing social dynamics.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

This paper addresses the difficulty of forecasting multiple financial time series (TS) conjointly using deep neural networks (DNN). We investigate whether DNN-based models could forecast these TS more efficiently by learning their representation directly. To this end, we make use of the dynamic factor graph (DFG) from that we enhance by proposing a novel variable-length attention-based mechanism to render it memory-augmented. Using this mechanism, we propose an unsupervised DNN architecture for multivariate TS forecasting that allows to learn and take advantage of the relationships between these TS. We test our model on two datasets covering 19 years of investment funds activities. Our experimental results show that our proposed approach outperforms significantly typical DNN-based and statistical models at forecasting their 21-day price trajectory.

北京阿比特科技有限公司