亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new action planning approach to automatically pack long linear elastic objects into common-size boxes with a bimanual robotic system. For that, we developed a hybrid geometric model to handle large-scale occlusions combining an online vision-based method and an offline reference template. Then, a reference point generator is introduced to automatically plan the reference poses for the predesigned action primitives. Finally, an action planner integrates these components enabling the execution of high-level behaviors and the accomplishment of packing manipulation tasks. To validate the proposed approach, we conducted a detailed experimental study with multiple types and lengths of objects and packing boxes.

相關內容

The functional demands of robotic systems often require completing various tasks or behaviors under the effect of disturbances or uncertain environments. Of increasing interest is the autonomy for dynamic robots, such as multirotors, motor vehicles, and legged platforms. Here, disturbances and environmental conditions can have significant impact on the successful performance of the individual dynamic behaviors, referred to as "motion primitives". Despite this, robustness can be achieved by switching to and transitioning through suitable motion primitives. This paper contributes such a method by presenting an abstraction of the motion primitive dynamics and a corresponding "motion primitive transfer function". From this, a mixed discrete and continuous "motion primitive graph" is constructed, and an algorithm capable of online search of this graph is detailed. The result is a framework capable of realizing holistic robustness on dynamic systems. This is experimentally demonstrated for a set of motion primitives on a quadrupedal robot, subject to various environmental and intentional disturbances.

This paper presents a statistical model for stationary ergodic point processes, estimated from a single realization observed in a square window. With existing approaches in stochastic geometry, it is very difficult to model processes with complex geometries formed by a large number of particles. Inspired by recent works on gradient descent algorithms for sampling maximum-entropy models, we describe a model that allows for fast sampling of new configurations reproducing the statistics of the given observation. Starting from an initial random configuration, its particles are moved according to the gradient of an energy, in order to match a set of prescribed moments (functionals). Our moments are defined via a phase harmonic operator on the wavelet transform of point patterns. They allow one to capture multi-scale interactions between the particles, while controlling explicitly the number of moments by the scales of the structures to model. We present numerical experiments on point processes with various geometric structures, and assess the quality of the model by spectral and topological data analysis.

Decentralized cooperative resource allocation schemes for robotic swarms are essential to enable high reliability in high throughput data exchanges. These cooperative schemes require control signaling with the aim to avoid half-duplex problems at the receiver and mitigate interference. We propose two cooperative resource allocation schemes, device sequential and group scheduling, and introduce a control signaling design. We observe that failure in the reception of these control signals leads to non-cooperative behavior and to significant performance degradation. The cause of these failures are identified and specific countermeasures are proposed and evaluated. We compare the proposed resource allocation schemes against the NR sidelink mode 2 resource allocation and show that even though signaling has an important impact on the resource allocation performance, our proposed device sequential and group scheduling resource allocation schemes improve reliability by an order of magnitude compared to sidelink mode 2.

Among the reasons that hinder the application of reinforcement learning (RL) to real-world problems, two factors are critical: limited data and the mismatch of the testing environment compared to training one. In this paper, we attempt to address these issues simultaneously with the problem setup of distributionally robust offline RL. Particularly, we learn an RL agent with the historical data obtained from the source environment and optimize it to perform well in the perturbed one. Moreover, we consider the linear function approximation to apply the algorithm to large-scale problems. We prove our algorithm can achieve the suboptimality of $O(1/\sqrt{K})$ depending on the linear function dimension $d$, which seems to be the first result with sample complexity guarantee in this setting. Diverse experiments are conducted to demonstrate our theoretical findings, showing the superiority of our algorithm against the non-robust one.

Imperative session types provide an imperative interface to session-typed communication. In such an interface, channel references are first-class objects with operations that change the typestate of the channel. Compared to functional session type APIs, the program structure is simpler at the surface, but typestate is required to model the current state of communication throughout. Following an early work that explored the imperative approach, a significant body of work on session types has neglected the imperative approach and opts for a functional approach that uses linear types to manage channel references soundly. We demonstrate that the functional approach subsumes the early work on imperative session types by exhibiting a typing and semantics preserving translation into a system of linear functional session types. We further show that the untyped backwards translation from the functional to the imperative calculus is semantics preserving. We restrict the type system of the functional calculus such that the backwards translation becomes type preserving. Thus, we precisely capture the difference in expressiveness of the two calculi and conclude that the lack of expressiveness in the imperative calculus is largely due to restrictions imposed by its type system.

Reed relay serves as the fundamental component of functional testing, which closely relates to the successful quality inspection of electronics. To provide accurate remaining useful life (RUL) estimation for reed relay, a hybrid deep learning network with degradation pattern clustering is proposed based on the following three considerations. First, multiple degradation behaviors are observed for reed relay, and hence a dynamic time wrapping-based $K$-means clustering is offered to distinguish degradation patterns from each other. Second, although proper selections of features are of great significance, few studies are available to guide the selection. The proposed method recommends operational rules for easy implementation purposes. Third, a neural network for remaining useful life estimation (RULNet) is proposed to address the weakness of the convolutional neural network (CNN) in capturing temporal information of sequential data, which incorporates temporal correlation ability after high-level feature representation of convolutional operation. In this way, three variants of RULNet are constructed with health indicators, features with self-organizing map, or features with curve fitting. Ultimately, the proposed hybrid model is compared with the typical baseline models, including CNN and long short-term memory network (LSTM), through a practical reed relay dataset with two distinct degradation manners. The results from both degradation cases demonstrate that the proposed method outperforms CNN and LSTM regarding the index root mean squared error.

We consider the multi-user detection (MUD) problem in uplink grant-free non-orthogonal multiple access (NOMA), where the access point has to identify the total number and correct identity of the active Internet of Things (IoT) devices and decode their transmitted data. We assume that IoT devices use complex spreading sequences and transmit information in a random-access manner following the burst-sparsity model, where some IoT devices transmit their data in multiple adjacent time slots with a high probability, while others transmit only once during a frame. Exploiting the temporal correlation, we propose an attention-based bidirectional long short-term memory (BiLSTM) network to solve the MUD problem. The BiLSTM network creates a pattern of the device activation history using forward and reverse pass LSTMs, whereas the attention mechanism provides essential context to the device activation points. By doing so, a hierarchical pathway is followed for detecting active devices in a grant-free scenario. Then, by utilising the complex spreading sequences, blind data detection for the estimated active devices is performed. The proposed framework does not require prior knowledge of device sparsity levels and channels for performing MUD. The results show that the proposed network achieves better performance compared to existing benchmark schemes.

Sequential manipulation tasks require a robot to perceive the state of an environment and plan a sequence of actions leading to a desired goal state. In such tasks, the ability to reason about spatial relations among object entities from raw sensor inputs is crucial in order to determine when a task has been completed and which actions can be executed. In this work, we propose SORNet (Spatial Object-Centric Representation Network), a framework for learning object-centric representations from RGB images conditioned on a set of object queries, represented as image patches called canonical object views. With only a single canonical view per object and no annotation, SORNet generalizes zero-shot to object entities whose shape and texture are both unseen during training. We evaluate SORNet on various spatial reasoning tasks such as spatial relation classification and relative direction regression in complex tabletop manipulation scenarios and show that SORNet significantly outperforms baselines including state-of-the-art representation learning techniques. We also demonstrate the application of the representation learned by SORNet on visual-servoing and task planning for sequential manipulation on a real robot.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司