Sequence prediction on temporal data requires the ability to understand compositional structures of multi-level semantics beyond individual and contextual properties. The task of temporal action segmentation, which aims at translating an untrimmed activity video into a sequence of action segments, remains challenging for this reason. This paper addresses the problem by introducing an effective activity grammar to guide neural predictions for temporal action segmentation. We propose a novel grammar induction algorithm that extracts a powerful context-free grammar from action sequence data. We also develop an efficient generalized parser that transforms frame-level probability distributions into a reliable sequence of actions according to the induced grammar with recursive rules. Our approach can be combined with any neural network for temporal action segmentation to enhance the sequence prediction and discover its compositional structure. Experimental results demonstrate that our method significantly improves temporal action segmentation in terms of both performance and interpretability on two standard benchmarks, Breakfast and 50 Salads.
Embedding methods transform the knowledge graph into a continuous, low-dimensional space, facilitating inference and completion tasks. Existing methods are mainly divided into two types: translational distance models and semantic matching models. A key challenge in translational distance models is their inability to effectively differentiate between 'head' and 'tail' entities in graphs. To address this problem, a novel location-sensitive embedding (LSE) method has been developed. LSE innovatively modifies the head entity using relation-specific mappings, conceptualizing relations as linear transformations rather than mere translations. The theoretical foundations of LSE, including its representational capabilities and its connections to existing models, have been thoroughly examined. A more streamlined variant, LSE-d, which employs a diagonal matrix for transformations to enhance practical efficiency, is also proposed. Experiments conducted on four large-scale KG datasets for link prediction show that LSEd either outperforms or is competitive with state-of-the-art related works.
We present efficient methods for calculating linear recurrences of hypergeometric double sums and, more generally, of multiple sums. In particular, we supplement this approach with the algorithmic theory of contiguous relations, which guarantees the applicability of our method for many input sums. In addition, we elaborate new techniques to optimize the underlying key task of our method to compute rational solutions of parameterized linear recurrences.
Refreshable tactile displays (RTDs) are predicted to soon become a viable option for the provision of accessible graphics for people who are blind or have low vision (BLV). This new technology for the tactile display of braille and graphics, usually using raised pins, makes it easier to generate and access a large number of graphics. However, it differs from existing tactile graphics in terms of scale, height and fidelity. Here, we share the perspectives of four key stakeholders -- blind touch readers, vision specialist teachers, accessible format producers and assistive technology providers -- to explore the potential uses, advantages and needs relating to the introduction of RTDs. We also provide advice on what role the data visualisation community can take to help ensure that people who are BLV are best able to benefit from the introduction of affordable RTDs.
In automated complexity analysis, noninterference-based type systems statically guarantee, via soundness, the property that well-typed programs compute functions of a given complexity class, e.g., the class FP of functions computable in polynomial time. These characterizations are also extensionally complete -- they capture all functions -- but are not intensionally complete as some polytime algorithms are rejected. This impact on expressive power is an unavoidable cost of achieving a tractable characterization. To overcome this issue, an avenue arising from security applications is to find a relaxation of noninterference based on a declassification mechanism that allows critical data to be released in a safe and controlled manner. Following this path, we present a new and intuitive declassification policy preserving FP-soundness and capturing strictly more programs than existing noninterference-based systems. We show the versatility of the approach: it also provides a new characterization of the class BFF of second-order polynomial time computable functions in a second-order imperative language, with first-order procedure calls. Type inference is tractable: it can be done in polynomial time.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.