亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is no doubt that advanced artificial intelligence models and high quality data are the keys to success in developing computational pathology tools. Although the overall volume of pathology data keeps increasing, a lack of quality data is a common issue when it comes to a specific task due to several reasons including privacy and ethical issues with patient data. In this work, we propose to exploit knowledge distillation, i.e., utilize the existing model to learn a new, target model, to overcome such issues in computational pathology. Specifically, we employ a student-teacher framework to learn a target model from a pre-trained, teacher model without direct access to source data and distill relevant knowledge via momentum contrastive learning with multi-head attention mechanism, which provides consistent and context-aware feature representations. This enables the target model to assimilate informative representations of the teacher model while seamlessly adapting to the unique nuances of the target data. The proposed method is rigorously evaluated across different scenarios where the teacher model was trained on the same, relevant, and irrelevant classification tasks with the target model. Experimental results demonstrate the accuracy and robustness of our approach in transferring knowledge to different domains and tasks, outperforming other related methods. Moreover, the results provide a guideline on the learning strategy for different types of tasks and scenarios in computational pathology. Code is available at: \url{//github.com/trinhvg/MoMA}.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INFORMS · 可約的 · 模型評估 · 機器學習建模 ·
2023 年 10 月 18 日

We study design of black-box model extraction attacks that can send minimal number of queries from a publicly available dataset to a target ML model through a predictive API with an aim to create an informative and distributionally equivalent replica of the target. First, we define distributionally equivalent and Max-Information model extraction attacks, and reduce them into a variational optimisation problem. The attacker sequentially solves this optimisation problem to select the most informative queries that simultaneously maximise the entropy and reduce the mismatch between the target and the stolen models. This leads to an active sampling-based query selection algorithm, Marich, which is model-oblivious. Then, we evaluate Marich on different text and image data sets, and different models, including CNNs and BERT. Marich extracts models that achieve $\sim 60-95\%$ of true model's accuracy and uses $\sim 1,000 - 8,500$ queries from the publicly available datasets, which are different from the private training datasets. Models extracted by Marich yield prediction distributions, which are $\sim 2-4\times$ closer to the target's distribution in comparison to the existing active sampling-based attacks. The extracted models also lead to $84-96\%$ accuracy under membership inference attacks. Experimental results validate that Marich is query-efficient, and capable of performing task-accurate, high-fidelity, and informative model extraction.

We propose a middleware solution designed to facilitate seamless integration of privacy using zero-knowledge proofs within various multi-chain protocols, encompassing domains such as DeFi, gaming, social networks, DAOs, e-commerce, and the metaverse. Our design achieves two divergent goals. zkFi aims to preserve consumer privacy while achieving regulation compliance through zero-knowledge proofs. These ends are simultaneously achievable. zkFi protocol is designed to function as a plug-and-play solution, offering developers the flexibility to handle transactional assets while abstracting away the complexities associated with zero-knowledge proofs. Notably, specific expertise in zero-knowledge proofs (ZKP) is optional, attributed to zkFi's modular approach and software development kit (SDK) availability.

Intent detection and identification from multi-turn dialogue has become a widely explored technique in conversational agents, for example, voice assistants and intelligent customer services. The conventional approaches typically cast the intent mining process as a classification task. Although neural classifiers have proven adept at such classification tasks, the issue of neural network models often impedes their practical deployment in real-world settings. We present a novel graph-based multi-turn dialogue system called , which identifies a user's intent by identifying intent elements and a standard query from a dynamically constructed and extensible intent graph using reinforcement learning. In addition, we provide visualization components to monitor the immediate reasoning path for each turn of a dialogue, which greatly facilitates further improvement of the system.

Data Augmentation through generating pseudo data has been proven effective in mitigating the challenge of data scarcity in the field of Grammatical Error Correction (GEC). Various augmentation strategies have been widely explored, most of which are motivated by two heuristics, i.e., increasing the distribution similarity and diversity of pseudo data. However, the underlying mechanism responsible for the effectiveness of these strategies remains poorly understood. In this paper, we aim to clarify how data augmentation improves GEC models. To this end, we introduce two interpretable and computationally efficient measures: Affinity and Diversity. Our findings indicate that an excellent GEC data augmentation strategy characterized by high Affinity and appropriate Diversity can better improve the performance of GEC models. Based on this observation, we propose MixEdit, a data augmentation approach that strategically and dynamically augments realistic data, without requiring extra monolingual corpora. To verify the correctness of our findings and the effectiveness of the proposed MixEdit, we conduct experiments on mainstream English and Chinese GEC datasets. The results show that MixEdit substantially improves GEC models and is complementary to traditional data augmentation methods.

Dense embedding-based retrieval is now the industry standard for semantic search and ranking problems, like obtaining relevant web documents for a given query. Such techniques use a two-stage process: (a) contrastive learning to train a dual encoder to embed both the query and documents and (b) approximate nearest neighbor search (ANNS) for finding similar documents for a given query. These two stages are disjoint; the learned embeddings might be ill-suited for the ANNS method and vice-versa, leading to suboptimal performance. In this work, we propose End-to-end Hierarchical Indexing -- EHI -- that jointly learns both the embeddings and the ANNS structure to optimize retrieval performance. EHI uses a standard dual encoder model for embedding queries and documents while learning an inverted file index (IVF) style tree structure for efficient ANNS. To ensure stable and efficient learning of discrete tree-based ANNS structure, EHI introduces the notion of dense path embedding that captures the position of a query/document in the tree. We demonstrate the effectiveness of EHI on several benchmarks, including de-facto industry standard MS MARCO (Dev set and TREC DL19) datasets. For example, with the same compute budget, EHI outperforms state-of-the-art (SOTA) in by 0.6% (MRR@10) on MS MARCO dev set and by 4.2% (nDCG@10) on TREC DL19 benchmarks.

Assessing the quality and impact of individual data points is critical for improving model performance and mitigating undesirable biases within the training dataset. Several data valuation algorithms have been proposed to quantify data quality, however, there lacks a systemic and standardized benchmarking system for data valuation. In this paper, we introduce OpenDataVal, an easy-to-use and unified benchmark framework that empowers researchers and practitioners to apply and compare various data valuation algorithms. OpenDataVal provides an integrated environment that includes (i) a diverse collection of image, natural language, and tabular datasets, (ii) implementations of eleven different state-of-the-art data valuation algorithms, and (iii) a prediction model API that can import any models in scikit-learn. Furthermore, we propose four downstream machine learning tasks for evaluating the quality of data values. We perform benchmarking analysis using OpenDataVal, quantifying and comparing the efficacy of state-of-the-art data valuation approaches. We find that no single algorithm performs uniformly best across all tasks, and an appropriate algorithm should be employed for a user's downstream task. OpenDataVal is publicly available at //opendataval.github.io with comprehensive documentation. Furthermore, we provide a leaderboard where researchers can evaluate the effectiveness of their own data valuation algorithms.

Resistive random access memory (ReRAM) is a promising technology that can perform low-cost and in-situ matrix-vector multiplication (MVM) in analog domain. Scientific computing requires high-precision floating-point (FP) processing. However, performing floating-point computation in ReRAM is challenging because of high hardware cost and execution time due to the large FP value range. In this work we present ReFloat, a data format and an accelerator architecture, for low-cost and high-performance floating-point processing in ReRAM for iterative linear solvers. ReFloat matches the ReRAM crossbar hardware and represents a block of FP values with reduced bits and an optimized exponent base for a high range of dynamic representation. Thus, ReFloat achieves less ReRAM crossbar consumption and fewer processing cycles and overcomes the noncovergence issue in a prior work. The evaluation on the SuiteSparse matrices shows ReFloat achieves 5.02x to 84.28x improvement in terms of solver time compared to a state-of-the-art ReRAM based accelerator.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司