Being able to infer ground truth from the responses of multiple imperfect advisors is a problem of crucial importance in many decision-making applications, such as lending, trading, investment, and crowd-sourcing. In practice, however, gathering answers from a set of advisors has a cost. Therefore, finding an advisor selection strategy that retrieves a reliable answer and maximizes the overall utility is a challenging problem. To address this problem, we propose a novel strategy for optimally selecting a set of advisers in a sequential binary decision-making setting, where multiple decisions need to be made over time. Crucially, we assume no access to ground truth and no prior knowledge about the reliability of advisers. Specifically, our approach considers how to simultaneously (1) select advisors by balancing the advisors' costs and the value of making correct decisions, (2) learn the trustworthiness of advisers dynamically without prior information by asking multiple advisers, and (3) make optimal decisions without access to the ground truth, improving this over time. We evaluate our algorithm through several numerical experiments. The results show that our approach outperforms two other methods that combine state-of-the-art models.
Randomized controlled trials (RCTs) are the gold standard for causal inference, but they are often powered only for average effects, making estimation of heterogeneous treatment effects (HTEs) challenging. Conversely, large-scale observational studies (OS) offer a wealth of data but suffer from confounding bias. Our paper presents a novel framework to leverage OS data for enhancing the efficiency in estimating conditional average treatment effects (CATEs) from RCTs while mitigating common biases. We propose an innovative approach to combine RCTs and OS data, expanding the traditionally used control arms from external sources. The framework relaxes the typical assumption of CATE invariance across populations, acknowledging the often unaccounted systematic differences between RCT and OS participants. We demonstrate this through the special case of a linear outcome model, where the CATE is sparsely different between the two populations. The core of our framework relies on learning potential outcome means from OS data and using them as a nuisance parameter in CATE estimation from RCT data. We further illustrate through experiments that using OS findings reduces the variance of the estimated CATE from RCTs and can decrease the required sample size for detecting HTEs.
A novel numerical strategy is introduced for computing approximations of solutions to a Cahn-Hilliard model with degenerate mobilities. This model has recently been introduced as a second-order phase-field approximation for surface diffusion flows. Its numerical discretization is challenging due to the degeneracy of the mobilities, which generally requires an implicit treatment to avoid stability issues at the price of increased complexity costs. To mitigate this drawback, we consider new first- and second-order Scalar Auxiliary Variable (SAV) schemes that, differently from existing approaches, focus on the relaxation of the mobility, rather than the Cahn-Hilliard energy. These schemes are introduced and analysed theoretically in the general context of gradient flows and then specialised for the Cahn-Hilliard equation with mobilities. Various numerical experiments are conducted to highlight the advantages of these new schemes in terms of accuracy, effectiveness and computational cost.
Despite the development of effective deepfake detection models in recent years, several recent studies have demonstrated that biases in the training data utilized to develop deepfake detection models can lead to unfair performance for demographic groups of different races and/or genders. Such can result in these groups being unfairly targeted or excluded from detection, allowing misclassified deepfakes to manipulate public opinion and erode trust in the model. While these studies have focused on identifying and evaluating the unfairness in deepfake detection, no methods have been developed to address the fairness issue of deepfake detection at the algorithm level. In this work, we make the first attempt to improve deepfake detection fairness by proposing novel loss functions to train fair deepfake detection models in ways that are agnostic or aware of demographic factors. Extensive experiments on four deepfake datasets and five deepfake detectors demonstrate the effectiveness and flexibility of our approach in improving the deepfake detection fairness.
We propose a causal framework for decomposing a group disparity in an outcome in terms of an intermediate treatment variable. Our framework captures the contributions of group differences in baseline potential outcome, treatment prevalence, average treatment effect, and selection into treatment. This framework is counterfactually formulated and readily informs policy interventions. The decomposition component for differential selection into treatment is particularly novel, revealing a new mechanism for explaining and ameliorating disparities. This framework reformulates the classic Kitagawa-Blinder-Oaxaca decomposition in causal terms, supplements causal mediation analysis by explaining group disparities instead of group effects, and resolves conceptual difficulties of recent random equalization decompositions. We also provide a conditional decomposition that allows researchers to incorporate covariates in defining the estimands and corresponding interventions. We develop nonparametric estimators based on efficient influence functions of the decompositions. We show that, under mild conditions, these estimators are $\sqrt{n}$-consistent, asymptotically normal, semiparametrically efficient, and doubly robust. We apply our framework to study the causal role of education in intergenerational income persistence. We find that both differential prevalence of and differential selection into college graduation significantly contribute to the disparity in income attainment between income origin groups.
Uses of artificial intelligence (AI), especially those powered by machine learning approaches, are growing in sectors and societies around the world. How will AI adoption proceed, especially in the international security realm? Research on automation bias suggests that humans can often be overconfident in AI, whereas research on algorithm aversion shows that, as the stakes of a decision rise, humans become more cautious about trusting algorithms. We theorize about the relationship between background knowledge about AI, trust in AI, and how these interact with other factors to influence the probability of automation bias in the international security context. We test these in a preregistered task identification experiment across a representative sample of 9000 adults in 9 countries with varying levels of AI industries. The results strongly support the theory, especially concerning AI background knowledge. A version of the Dunning Kruger effect appears to be at play, whereby those with the lowest level of experience with AI are slightly more likely to be algorithm-averse, then automation bias occurs at lower levels of knowledge before leveling off as a respondent's AI background reaches the highest levels. Additional results show effects from the task's difficulty, overall AI trust, and whether a human or AI decision aid is described as highly competent or less competent.
Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure. In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli. Our results show that different RNNs can solve the same task by converging to different underlying dynamics and also how the performance gracefully degrades as either network size is decreased, interval duration is increased, or connectivity damage is increased. For the considered tasks, we explored how robust the network obtained after training can be according to task parameterization. In the process, we developed a framework that can be useful to parameterize other tasks of interest in computational neuroscience. Our results are useful to quantify different aspects of the models, which are normally used as black boxes and need to be understood in order to model the biological response of cerebral cortex areas.
Three-dimensional (3D) object recognition technology is being used as a core technology in advanced technologies such as autonomous driving of automobiles. There are two sets of approaches for 3D object recognition: (i) hand-crafted approaches like Global Orthographic Object Descriptor (GOOD), and (ii) deep learning-based approaches such as MobileNet and VGG. However, it is needed to know which of these approaches works better in an open-ended domain where the number of known categories increases over time, and the system should learn about new object categories using few training examples. In this paper, we first implemented an offline 3D object recognition system that takes an object view as input and generates category labels as output. In the offline stage, instance-based learning (IBL) is used to form a new category and we use K-fold cross-validation to evaluate the obtained object recognition performance. We then test the proposed approach in an online fashion by integrating the code into a simulated teacher test. As a result, we concluded that the approach using deep learning features is more suitable for open-ended fashion. Moreover, we observed that concatenating the hand-crafted and deep learning features increases the classification accuracy.
Anomaly detection is an important field that aims to identify unexpected patterns or data points, and it is closely related to many real-world problems, particularly to applications in finance, manufacturing, cyber security, and so on. While anomaly detection has been studied extensively in various fields, detecting future anomalies before they occur remains an unexplored territory. In this paper, we present a novel type of anomaly detection, called \emph{\textbf{P}recursor-of-\textbf{A}nomaly} (PoA) detection. Unlike conventional anomaly detection, which focuses on determining whether a given time series observation is an anomaly or not, PoA detection aims to detect future anomalies before they happen. To solve both problems at the same time, we present a neural controlled differential equation-based neural network and its multi-task learning algorithm. We conduct experiments using 17 baselines and 3 datasets, including regular and irregular time series, and demonstrate that our presented method outperforms the baselines in almost all cases. Our ablation studies also indicate that the multitasking training method significantly enhances the overall performance for both anomaly and PoA detection.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.