亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes an adaptive graph-based approach for multi-label image classification. Graph-based methods have been largely exploited in the field of multi-label classification, given their ability to model label correlations. Specifically, their effectiveness has been proven not only when considering a single domain but also when taking into account multiple domains. However, the topology of the used graph is not optimal as it is pre-defined heuristically. In addition, consecutive Graph Convolutional Network (GCN) aggregations tend to destroy the feature similarity. To overcome these issues, an architecture for learning the graph connectivity in an end-to-end fashion is introduced. This is done by integrating an attention-based mechanism and a similarity-preserving strategy. The proposed framework is then extended to multiple domains using an adversarial training scheme. Numerous experiments are reported on well-known single-domain and multi-domain benchmarks. The results demonstrate that our approach achieves competitive results in terms of mean Average Precision (mAP) and model size as compared to the state-of-the-art. The code will be made publicly available.

相關內容

圖像(xiang)分(fen)(fen)類,顧(gu)名思義,是一個輸入圖像(xiang),輸出對該圖像(xiang)內容分(fen)(fen)類的描述的問題。它是計算機視覺的核心,實際(ji)應用廣泛(fan)。

This paper examines the role that enchantment plays in the design of AI things by constructing a taxonomy of design approaches that increase or decrease the perception of magic and enchantment. We start from the design discourse surrounding recent developments in AI technologies, highlighting specific interaction qualities such as algorithmic uncertainties and errors and articulating relations to the rhetoric of magic and supernatural thinking. Through analyzing and reflecting upon 52 students' design projects from two editions of a Master course in design and AI, we identify seven design principles and unpack the effects of each in terms of enchantment and disenchantment. We conclude by articulating ways in which this taxonomy can be approached and appropriated by design/HCI practitioners, especially to support exploration and reflexivity.

The aim of this paper is to evaluate whether large language models trained on multi-choice question data can be used to discriminate between medical subjects. This is an important and challenging task for automatic question answering. To achieve this goal, we train deep neural networks for multi-class classification of questions into the inferred medical subjects. Using our Multi-Question (MQ) Sequence-BERT method, we outperform the state-of-the-art results on the MedMCQA dataset with an accuracy of 0.68 and 0.60 on their development and test sets, respectively. In this sense, we show the capability of AI and LLMs in particular for multi-classification tasks in the Healthcare domain.

Visual relationship detection aims to identify objects and their relationships in images. Prior methods approach this task by adding separate relationship modules or decoders to existing object detection architectures. This separation increases complexity and hinders end-to-end training, which limits performance. We propose a simple and highly efficient decoder-free architecture for open-vocabulary visual relationship detection. Our model consists of a Transformer-based image encoder that represents objects as tokens and models their relationships implicitly. To extract relationship information, we introduce an attention mechanism that selects object pairs likely to form a relationship. We provide a single-stage recipe to train this model on a mixture of object and relationship detection data. Our approach achieves state-of-the-art relationship detection performance on Visual Genome and on the large-vocabulary GQA benchmark at real-time inference speeds. We provide analyses of zero-shot performance, ablations, and real-world qualitative examples.

This paper introduces the Passive Transformable Omni-Ball (PTOB), an advanced omnidirectional wheel engineered to enhance step-climbing performance, incorporate built-in actuators, diminish vibrations, and fortify structural integrity. By modifying the omni-ball's structure from two to three segments, we have achieved improved in-wheel actuation and a reduction in vibrational feedback. Additionally, we have implemented a sliding mechanism in the follower wheels to boost the wheel's step-climbing abilities. A prototype with a 127 mm diameter PTOB was constructed, which confirmed its functionality for omnidirectional movement and internal actuation. Compared to a traditional omni-wheel, the PTOB demonstrated a comparable level of vibration while offering superior capabilities. Extensive testing in varied settings showed that the PTOB can adeptly handle step obstacles up to 45 mm, equivalent to 35 $\%$ of the wheel's diameter, in both the forward and lateral directions. The PTOB showcased robust construction and proved to be versatile in navigating through environments with diverse obstacles.

This paper presents a stochastic/robust nonlinear model predictive control (NMPC) to enhance the robustness of legged locomotion against contact uncertainties. We integrate the contact uncertainties into the covariance propagation of stochastic/robust NMPC framework by leveraging the guard saltation matrix and an extended Kalman filter-like covariance update. We achieve fast stochastic/robust NMPC computation by utilizing the zero-order stochastic/robust NMPC algorithm with additional improvements in computational efficiency concerning the feedback gains. We conducted numerical experiments and demonstrate that the proposed method can accurately forecast future state covariance and generate trajectories that satisfies constraints even in the presence of the contact uncertainties. Hardware experiments on the perceptive locomotion of a wheeled-legged robot were also carried out, validating the feasibility of the proposed method in a real-world system with limited on-board computation.

3D generation has witnessed significant advancements, yet efficiently producing high-quality 3D assets from a single image remains challenging. In this paper, we present a triplane autoencoder, which encodes 3D models into a compact triplane latent space to effectively compress both the 3D geometry and texture information. Within the autoencoder framework, we introduce a 3D-aware cross-attention mechanism, which utilizes low-resolution latent representations to query features from a high-resolution 3D feature volume, thereby enhancing the representation capacity of the latent space. Subsequently, we train a diffusion model on this refined latent space. In contrast to solely relying on image embedding for 3D generation, our proposed method advocates for the simultaneous utilization of both image embedding and shape embedding as conditions. Specifically, the shape embedding is estimated via a diffusion prior model conditioned on the image embedding. Through comprehensive experiments, we demonstrate that our method outperforms state-of-the-art algorithms, achieving superior performance while requiring less training data and time. Our approach enables the generation of high-quality 3D assets in merely 7 seconds on a single A100 GPU.

This paper presents MULAN-WC, a novel multi-robot 3D reconstruction framework that leverages wireless signal-based coordination between robots and Neural Radiance Fields (NeRF). Our approach addresses key challenges in multi-robot 3D reconstruction, including inter-robot pose estimation, localization uncertainty quantification, and active best-next-view selection. We introduce a method for using wireless Angle-of-Arrival (AoA) and ranging measurements to estimate relative poses between robots, as well as quantifying and incorporating the uncertainty embedded in the wireless localization of these pose estimates into the NeRF training loss to mitigate the impact of inaccurate camera poses. Furthermore, we propose an active view selection approach that accounts for robot pose uncertainty when determining the next-best views to improve the 3D reconstruction, enabling faster convergence through intelligent view selection. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of our framework in theory and in practice. Leveraging wireless coordination and localization uncertainty-aware training, MULAN-WC can achieve high-quality 3d reconstruction which is close to applying the ground truth camera poses. Furthermore, the quantification of the information gain from a novel view enables consistent rendering quality improvement with incrementally captured images by commending the robot the novel view position. Our hardware experiments showcase the practicality of deploying MULAN-WC to real robotic systems.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.

北京阿比特科技有限公司