Blockchain has been increasingly used as a software component to enable decentralisation in software architecture for a variety of applications. Blockchain governance has received considerable attention to ensure the safe and appropriate use and evolution of blockchain, especially after the Ethereum DAO attack in 2016. However, there are no systematic efforts to analyse existing governance solutions. To understand the state-of-the-art of blockchain governance, we conducted a systematic literature review with 35 primary studies. The extracted data from primary studies are synthesised to answer identified research questions. The study results reveal several major findings: 1) governance can improve the adaptability and upgradability of blockchain, whilst the current studies neglect broader ethical responsibilities as the objectives of blockchain governance; 2) governance is along with the development process of a blockchain platform, while ecosystem-level governance process is missing, and; 3) the responsibilities and capabilities of blockchain stakeholders are briefly discussed, whilst the decision rights, accountability, and incentives of blockchain stakeholders are still under studied. We provide actionable guidelines for academia and practitioners to use throughout the lifecycle of blockchain, and identify future trends to support researchers in this area.
The textile and apparel industries have grown tremendously over the last years. Customers no longer have to visit many stores, stand in long queues, or try on garments in dressing rooms as millions of products are now available in online catalogs. However, given the plethora of options available, an effective recommendation system is necessary to properly sort, order, and communicate relevant product material or information to users. Effective fashion RS can have a noticeable impact on billions of customers' shopping experiences and increase sales and revenues on the provider-side. The goal of this survey is to provide a review of recommender systems that operate in the specific vertical domain of garment and fashion products. We have identified the most pressing challenges in fashion RS research and created a taxonomy that categorizes the literature according to the objective they are trying to accomplish (e.g., item or outfit recommendation, size recommendation, explainability, among others) and type of side-information (users, items, context). We have also identified the most important evaluation goals and perspectives (outfit generation, outfit recommendation, pairing recommendation, and fill-in-the-blank outfit compatibility prediction) and the most commonly used datasets and evaluation metrics.
The study of autonomous agents has a long tradition in the Multiagent Systems and the Semantic Web communities, with applications ranging from automating business processes to personal assistants. More recently, the Web of Things (WoT), which is an extension of the Internet of Things (IoT) with metadata expressed in Web standards, and its community provide further motivation for pushing the autonomous agents research agenda forward. Although representing and reasoning about norms, policies and preferences is crucial to ensuring that autonomous agents act in a manner that satisfies stakeholder requirements, normative concepts, policies and preferences have yet to be considered as first-class abstractions in Web-based multiagent systems. Towards this end, this paper motivates the need for alignment and joint research across the Multiagent Systems, Semantic Web, and WoT communities, introduces a conceptual framework for governance of autonomous agents on the Web, and identifies several research challenges and opportunities.
Problems in the transportation segment are accidents, increasing bad traffic flow and pollution. The intelligent transportation system using external infrastructure (ITS) can tackle these problems. To the best of our knowledge, there exists no current systematic review of the existing solutions. To fill this knowledge gap, this paper provides an overview about existing ITS which use external infrastructure. Furthermore, this paper discovers the currently not adequately answered research questions. For this reason, we performed a literature review to documents, which describes existing ITS solutions since 2009 until today. We categorized the results according to technology level and analyzed their properties. Thereby, we made the ITS solutions comparable and highlighted the past development as well as the current trends. According to the mentioned method, we analyzed more than 346 papers, which includes 40 test bed projects. In summary, the current ITS can deliver accurate information about individuals in traffic situations in real-time. However, further research in ITS should focus on more reliable perception of the traffic using modern sensors, plug and play mechanism as well as secure real-time distribution in decentralized manner for a high amount of data. By addressing these topics, the development of intelligent transportation systems is in a correction direction for the comprehensive roll-out.
Cloud-based application deployment is becoming increasingly popular among businesses, thanks to the emergence of microservices. However, securing such architectures is a challenging task since traditional security concepts cannot be directly applied to microservice architectures due to their distributed nature. The situation is exacerbated by the scattered nature of guidelines and best practices advocated by practitioners and organizations in this field. This research paper we aim to shay light over the current microservice security discussions hidden within Grey Literature (GL) sources. Particularly, we identify the challenges that arise when securing microservice architectures, as well as solutions recommended by practitioners to address these issues. For this, we conducted a systematic GL study on the challenges and best practices of microservice security present in the Internet with the goal of capturing relevant discussions in blogs, white papers, and standards. We collected 312 GL sources from which 57 were rigorously classified and analyzed. This analysis on the one hand validated past academic literature studies in the area of microservice security, but it also identified improvements to existing methodologies pointing towards future research directions.
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.
Reinforcement learning (RL) algorithms have been around for decades and been employed to solve various sequential decision-making problems. These algorithms however have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This paper addresses an important aspect of deep RL related to situations that demand multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes, multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed, with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to future development of more robust and highly useful multi-agent learning methods for solving real-world problems.
Dialogue systems have attracted more and more attention. Recent advances on dialogue systems are overwhelmingly contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning can leverage a massive amount of data to learn meaningful feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on dialogue systems from various perspectives and discuss some possible research directions. In particular, we generally divide existing dialogue systems into task-oriented and non-task-oriented models, then detail how deep learning techniques help them with representative algorithms and finally discuss some appealing research directions that can bring the dialogue system research into a new frontier.