亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training large language models to follow instructions makes them perform better on a wide range of tasks, generally becoming more helpful. However, a perfectly helpful model will follow even the most malicious instructions and readily generate harmful content. In this paper, we raise concerns over the safety of models that only emphasize helpfulness, not safety, in their instruction-tuning. We show that several popular instruction-tuned models are highly unsafe. Moreover, we show that adding just 3% safety examples (a few hundred demonstrations) in the training set when fine-tuning a model like LLaMA can substantially improve their safety. Our safety-tuning does not make models significantly less capable or helpful as measured by standard benchmarks. However, we do find a behavior of exaggerated safety, where too much safety-tuning makes models refuse to respond to reasonable prompts that superficially resemble unsafe ones. Our study sheds light on trade-offs in training LLMs to follow instructions and exhibit safe behavior.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 語言模型化 · 相關系數 · 負相關法 · 預測器/決策函數 ·
2023 年 11 月 8 日

Research on the cognitive plausibility of language models (LMs) has so far mostly concentrated on modelling psycholinguistic response variables such as reading times, gaze durations and N400/P600 EEG signals, while mostly leaving out the dimension of what Mahowald et al. (2023) described as formal and functional linguistic competence, and developmental plausibility. We address this gap by training a series of GPT-like language models of different sizes on the strict version of the BabyLM pretraining corpus, evaluating on the challenge tasks (BLiMP, GLUE, MSGS) and an additional reading time prediction task. We find a positive correlation between LM size and performance on all three challenge tasks, with different preferences for model width and depth in each of the tasks. In contrast, a negative correlation was found between LM size and reading time fit of linear mixed-effects models using LM surprisal as a predictor, with the second-smallest LM achieving the largest log-likelihood reduction over a baseline model without surprisal. This suggests that modelling processing effort and linguistic competence may require an approach different from training GPT-like LMs on a developmentally plausible corpus.

To avoid failures on out-of-distribution data, recent works have sought to extract features that have an invariant or stable relationship with the label across domains, discarding "spurious" or unstable features whose relationship with the label changes across domains. However, unstable features often carry complementary information that could boost performance if used correctly in the test domain. In this work, we show how this can be done without test-domain labels. In particular, we prove that pseudo-labels based on stable features provide sufficient guidance for doing so, provided that stable and unstable features are conditionally independent given the label. Based on this theoretical insight, we propose Stable Feature Boosting (SFB), an algorithm for: (i) learning a predictor that separates stable and conditionally-independent unstable features; and (ii) using the stable-feature predictions to adapt the unstable-feature predictions in the test domain. Theoretically, we prove that SFB can learn an asymptotically-optimal predictor without test-domain labels. Empirically, we demonstrate the effectiveness of SFB on real and synthetic data.

The pursuit of fairness in machine learning models has emerged as a critical research challenge in different applications ranging from bank loan approval to face detection. Despite the widespread adoption of artificial intelligence algorithms across various domains, concerns persist regarding the presence of biases and discrimination within these models. To address this pressing issue, this study introduces a novel method called "The Fairness Stitch (TFS)" to enhance fairness in deep learning models. This method combines model stitching and training jointly, while incorporating fairness constraints. In this research, we assess the effectiveness of our proposed method by conducting a comprehensive evaluation of two well-known datasets, CelebA and UTKFace. We systematically compare the performance of our approach with the existing baseline method. Our findings reveal a notable improvement in achieving a balanced trade-off between fairness and performance, highlighting the promising potential of our method to address bias-related challenges and foster equitable outcomes in machine learning models. This paper poses a challenge to the conventional wisdom of the effectiveness of the last layer in deep learning models for de-biasing.

Using model weights pretrained on a high-resource language as a warm start can reduce the need for data and compute to obtain high-quality language models for other, especially low-resource, languages. However, if we want to use a new tokenizer specialized for the target language, we cannot transfer the source model's embedding matrix. In this paper, we propose FOCUS - Fast Overlapping Token Combinations Using Sparsemax, a novel embedding initialization method that initializes the embedding matrix effectively for a new tokenizer based on information in the source model's embedding matrix. FOCUS represents newly added tokens as combinations of tokens in the overlap of the source and target vocabularies. The overlapping tokens are selected based on semantic similarity in an auxiliary static token embedding space. We focus our study on using the multilingual XLM-R as a source model and empirically show that FOCUS outperforms random initialization and previous work in language modeling and on a range of downstream tasks (NLI, QA, and NER).

Many annotation tasks in natural language processing are highly subjective in that there can be different valid and justified perspectives on what is a proper label for a given example. This also applies to the judgment of argument quality, where the assignment of a single ground truth is often questionable. At the same time, there are generally accepted concepts behind argumentation that form a common ground. To best represent the interplay of individual and shared perspectives, we consider a continuum of approaches ranging from models that fully aggregate perspectives into a majority label to "share nothing"-architectures in which each annotator is considered in isolation from all other annotators. In between these extremes, inspired by models used in the field of recommender systems, we investigate the extent to which architectures that include layers to model the relations between different annotators are beneficial for predicting single-annotator labels. By means of two tasks of argument quality classification (argument concreteness and validity/novelty of conclusions), we show that recommender architectures increase the averaged annotator-individual F$_1$-scores up to $43\%$ over a majority label model. Our findings indicate that approaches to subjectivity can benefit from relating individual perspectives.

Incorporating inductive biases into ML models is an active area of ML research, especially when ML models are applied to data about the physical world. Equivariant Graph Neural Networks (GNNs) have recently become a popular method for learning from physics data because they directly incorporate the symmetries of the underlying physical system. Drawing from the relevant literature around group equivariant networks, this paper presents a comprehensive evaluation of the proposed benefits of equivariant GNNs by using real-world particle physics reconstruction tasks as an evaluation test-bed. We demonstrate that many of the theoretical benefits generally associated with equivariant networks may not hold for realistic systems and introduce compelling directions for future research that will benefit both the scientific theory of ML and physics applications.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

北京阿比特科技有限公司