In overhead image segmentation tasks, including additional spectral bands beyond the traditional RGB channels can improve model performance. However, it is still unclear how incorporating this additional data impacts model robustness to adversarial attacks and natural perturbations. For adversarial robustness, the additional information could improve the model's ability to distinguish malicious inputs, or simply provide new attack avenues and vulnerabilities. For natural perturbations, the additional information could better inform model decisions and weaken perturbation effects or have no significant influence at all. In this work, we seek to characterize the performance and robustness of a multispectral (RGB and near infrared) image segmentation model subjected to adversarial attacks and natural perturbations. While existing adversarial and natural robustness research has focused primarily on digital perturbations, we prioritize on creating realistic perturbations designed with physical world conditions in mind. For adversarial robustness, we focus on data poisoning attacks whereas for natural robustness, we focus on extending ImageNet-C common corruptions for fog and snow that coherently and self-consistently perturbs the input data. Overall, we find both RGB and multispectral models are vulnerable to data poisoning attacks regardless of input or fusion architectures and that while physically realizable natural perturbations still degrade model performance, the impact differs based on fusion architecture and input data.
Neural networks, being susceptible to adversarial attacks, should face a strict level of scrutiny before being deployed in critical or adversarial applications. This paper uses ideas from Chaos Theory to explain, analyze, and quantify the degree to which neural networks are susceptible to or robust against adversarial attacks. To this end, we present a new metric, the "susceptibility ratio," given by $\hat \Psi(h, \theta)$, which captures how greatly a model's output will be changed by perturbations to a given input. Our results show that susceptibility to attack grows significantly with the depth of the model, which has safety implications for the design of neural networks for production environments. We provide experimental evidence of the relationship between $\hat \Psi$ and the post-attack accuracy of classification models, as well as a discussion of its application to tasks lacking hard decision boundaries. We also demonstrate how to quickly and easily approximate the certified robustness radii for extremely large models, which until now has been computationally infeasible to calculate directly.
Recent breakthroughs in synthetic data generation approaches made it possible to produce highly photorealistic images which are hardly distinguishable from real ones. Furthermore, synthetic generation pipelines have the potential to generate an unlimited number of images. The combination of high photorealism and scale turn synthetic data into a promising candidate for improving various machine learning (ML) pipelines. Thus far, a large body of research in this field has focused on using synthetic images for training, by augmenting and enlarging training data. In contrast to using synthetic data for training, in this work we explore whether synthetic data can be beneficial for model selection. Considering the task of image classification, we demonstrate that when data is scarce, synthetic data can be used to replace the held out validation set, thus allowing to train on a larger dataset. We also introduce a novel method to calibrate the synthetic error estimation to fit that of the real domain. We show that such calibration significantly improves the usefulness of synthetic data for model selection.
The generative autoencoders, such as the variational autoencoders or the adversarial autoencoders, have achieved great success in lots of real-world applications, including image generation, and signal communication. However, little concern has been devoted to their robustness during practical deployment. Due to the probabilistic latent structure, variational autoencoders (VAEs) may confront problems such as a mismatch between the posterior distribution of the latent and real data manifold, or discontinuity in the posterior distribution of the latent. This leaves a back door for malicious attackers to collapse VAEs from the latent space, especially in scenarios where the encoder and decoder are used separately, such as communication and compressed sensing. In this work, we provide the first study on the adversarial robustness of generative autoencoders in the latent space. Specifically, we empirically demonstrate the latent vulnerability of popular generative autoencoders through attacks in the latent space. We also evaluate the difference between variational autoencoders and their deterministic variants and observe that the latter performs better in latent robustness. Meanwhile, we identify a potential trade-off between the adversarial robustness and the degree of the disentanglement of the latent codes. Additionally, we also verify the feasibility of improvement for the latent robustness of VAEs through adversarial training. In summary, we suggest concerning the adversarial latent robustness of the generative autoencoders, analyze several robustness-relative issues, and give some insights into a series of key challenges.
Federated online learning to rank (FOLTR) aims to preserve user privacy by not sharing their searchable data and search interactions, while guaranteeing high search effectiveness, especially in contexts where individual users have scarce training data and interactions. For this, FOLTR trains learning to rank models in an online manner -- i.e. by exploiting users' interactions with the search systems (queries, clicks), rather than labels -- and federatively -- i.e. by not aggregating interaction data in a central server for training purposes, but by training instances of a model on each user device on their own private data, and then sharing the model updates, not the data, across a set of users that have formed the federation. Existing FOLTR methods build upon advances in federated learning. While federated learning methods have been shown effective at training machine learning models in a distributed way without the need of data sharing, they can be susceptible to attacks that target either the system's security or its overall effectiveness. In this paper, we consider attacks on FOLTR systems that aim to compromise their search effectiveness. Within this scope, we experiment with and analyse data and model poisoning attack methods to showcase their impact on FOLTR search effectiveness. We also explore the effectiveness of defense methods designed to counteract attacks on FOLTR systems. We contribute an understanding of the effect of attack and defense methods for FOLTR systems, as well as identifying the key factors influencing their effectiveness.
Despite their promising performance across various natural language processing (NLP) tasks, current NLP systems are vulnerable to textual adversarial attacks. To defend against these attacks, most existing methods apply adversarial training by incorporating adversarial examples. However, these methods have to rely on ground-truth labels to generate adversarial examples, rendering it impractical for large-scale model pre-training which is commonly used nowadays for NLP and many other tasks. In this paper, we propose a novel learning framework called SCAT (Self-supervised Contrastive Learning via Adversarial Training), which can learn robust representations without requiring labeled data. Specifically, SCAT modifies random augmentations of the data in a fully labelfree manner to generate adversarial examples. Adversarial training is achieved by minimizing the contrastive loss between the augmentations and their adversarial counterparts. We evaluate SCAT on two text classification datasets using two state-of-the-art attack schemes proposed recently. Our results show that SCAT can not only train robust language models from scratch, but it can also significantly improve the robustness of existing pre-trained language models. Moreover, to demonstrate its flexibility, we show that SCAT can also be combined with supervised adversarial training to further enhance model robustness.
Data economy relies on data-driven systems and complex machine learning applications are fueled by them. Unfortunately, however, machine learning models are exposed to fraudulent activities and adversarial attacks, which threaten their security and trustworthiness. In the last decade or so, the research interest on adversarial machine learning has grown significantly, revealing how learning applications could be severely impacted by effective attacks. Although early results of adversarial machine learning indicate the huge potential of the approach to specific domains such as image processing, still there is a gap in both the research literature and practice regarding how to generalize adversarial techniques in other domains and applications. Fraud detection is a critical defense mechanism for data economy, as it is for other applications as well, which poses several challenges for machine learning. In this work, we describe how attacks against fraud detection systems differ from other applications of adversarial machine learning, and propose a number of interesting directions to bridge this gap.
A key challenge in robotic manipulation in open domains is how to acquire diverse and generalizable skills for robots. Recent research in one-shot imitation learning has shown promise in transferring trained policies to new tasks based on demonstrations. This feature is attractive for enabling robots to acquire new skills and improving task and motion planning. However, due to limitations in the training dataset, the current focus of the community has mainly been on simple cases, such as push or pick-place tasks, relying solely on visual guidance. In reality, there are many complex skills, some of which may even require both visual and tactile perception to solve. This paper aims to unlock the potential for an agent to generalize to hundreds of real-world skills with multi-modal perception. To achieve this, we have collected a dataset comprising over 110,000 \emph{contact-rich} robot manipulation sequences across diverse skills, contexts, robots, and camera viewpoints, all collected \emph{in the real world}. Each sequence in the dataset includes visual, force, audio, and action information, along with a corresponding human demonstration video. We have invested significant efforts in calibrating all the sensors and ensuring a high-quality dataset. The dataset is made publicly available at rh20t.github.io
Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.