亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Viterbi & Viterbi (V&V) algorithm is well understood for QPSK and 16-QAM, but modifications are required for higher-order modulation formats. We present an approach to extend the standard V&V algorithm for higher-order modulation formats by modifying the transmit constellation with geometric constellation shaping.

相關內容

All-digital massive multiuser (MU) multiple-input multiple-output (MIMO) at millimeter-wave (mmWave) frequencies is a promising technology for next-generation wireless systems. Low-resolution analog-to-digital converters (ADCs) can be utilized to reduce the power consumption of all-digital basestation (BS) designs. However, simultaneously transmitting user equipments (UEs) with vastly different BS-side receive powers either drown weak UEs in quantization noise or saturate the ADCs. To address this issue, we propose high dynamic range (HDR) MIMO, a new paradigm that enables simultaneous reception of strong and weak UEs with low-resolution ADCs. HDR MIMO combines an adaptive analog spatial transform with digital equalization: The spatial transform focuses strong UEs on a subset of ADCs in order to mitigate quantization and saturation artifacts; digital equalization is then used for data detection. We demonstrate the efficacy of HDR MIMO in a massive MU-MIMO mmWave scenario that uses Householder reflections as spatial transform.

Two linearly uncorrelated binary variables must be also independent because non-linear dependence cannot manifest with only two possible states. This inherent linearity is the atom of dependency constituting any complex form of relationship. Inspired by this observation, we develop a framework called binary expansion linear effect (BELIEF) for understanding arbitrary relationships with a binary outcome. Models from the BELIEF framework are easily interpretable because they describe the association of binary variables in the language of linear models, yielding convenient theoretical insight and striking Gaussian parallels. With BELIEF, one may study generalized linear models (GLM) through transparent linear models, providing insight into how the choice of link affects modeling. For example, setting a GLM interaction coefficient to zero does not necessarily lead to the kind of no-interaction model assumption as understood under their linear model counterparts. Furthermore, for a binary response, maximum likelihood estimation for GLMs paradoxically fails under complete separation, when the data are most discriminative, whereas BELIEF estimation automatically reveals the perfect predictor in the data that is responsible for complete separation. We explore these phenomena and provide related theoretical results. We also provide preliminary empirical demonstration of some theoretical results.

Modified Patankar--Runge--Kutta (MPRK) methods are linearly implicit time integration schemes developed to preserve positivity and a linear invariant such as the total mass in chemical reactions. MPRK methods are naturally equipped with embedded schemes yielding a local error estimate similar to Runge--Kutta pairs. To design good time step size controllers using these error estimates, we propose to use Bayesian optimization. In particular, we design a novel objective function that captures important properties such as tolerance convergence and computational stability. We apply our new approach to several MPRK schemes and controllers based on digital signal processing, extending classical PI and PID controllers. We demonstrate that the optimization process yields controllers that are at least as good as the best controllers chosen from a wide range of suggestions available for classical explicit and implicit time integration methods.

Outflow boundaries play an important role in multiphase fluid dynamics simulations that involve transition between liquid and vapor phases. These flows are dominated by low Weber numbers and a sharp jump in pressure, velocity, and temperature. Inadequate treatment of these jumps at the outlet generates undesirable fluid disturbances that propagate upstream and lead to instabilities within the computational domain. To mitigate these disturbances, we introduce a forcing term that can be applied to incompressible Navier-Stokes equations to enforce stability in the numerical solution. The forcing term acts as a damping mechanism to control vortices that are generated by droplet/bubbles in multiphase flows, and is designed to be a general formulation that can be coupled with a fixed pressure outflow boundary condition to simulate a variety of multiphase flow problems. We demonstrate its applicability to simulate pool and flow boiling problems, where bubble-induced vortices during evaporation and condensation present a challenge at the outflow. Validation and verification cases are chosen to quantify accuracy and stability of the proposed method in comparison to established benchmarks and reference solutions, along with detailed performance analysis for three-dimensional simulations on leadership supercomputing platforms. Computational experiments are performed using Flash-X, which is a composable open-source software instrument designed for multiscale fluid dynamics simulations on heterogeneous architectures.

Off-Policy Evaluation (OPE) in contextual bandits is crucial for assessing new policies using existing data without costly experimentation. However, current OPE methods, such as Inverse Probability Weighting (IPW) and Doubly Robust (DR) estimators, suffer from high variance, particularly in cases of low overlap between target and behavior policies or large action and context spaces. In this paper, we introduce a new OPE estimator for contextual bandits, the Marginal Ratio (MR) estimator, which focuses on the shift in the marginal distribution of outcomes $Y$ instead of the policies themselves. Through rigorous theoretical analysis, we demonstrate the benefits of the MR estimator compared to conventional methods like IPW and DR in terms of variance reduction. Additionally, we establish a connection between the MR estimator and the state-of-the-art Marginalized Inverse Propensity Score (MIPS) estimator, proving that MR achieves lower variance among a generalized family of MIPS estimators. We further illustrate the utility of the MR estimator in causal inference settings, where it exhibits enhanced performance in estimating Average Treatment Effects (ATE). Our experiments on synthetic and real-world datasets corroborate our theoretical findings and highlight the practical advantages of the MR estimator in OPE for contextual bandits.

Traditional partial differential equation (PDE) solvers can be computationally expensive, which motivates the development of faster methods, such as reduced-order-models (ROMs). We present GPLaSDI, a hybrid deep-learning and Bayesian ROM. GPLaSDI trains an autoencoder on full-order-model (FOM) data and simultaneously learns simpler equations governing the latent space. These equations are interpolated with Gaussian Processes, allowing for uncertainty quantification and active learning, even with limited access to the FOM solver. Our framework is able to achieve up to 100,000 times speed-up and less than 7% relative error on fluid mechanics problems.

Non-autoregressive models have been widely studied in the Complete Information Scenario (CIS), in which the input has complete information of corresponding output. However, their explorations in the Incomplete Information Scenario (IIS) are extremely limited. Our analyses reveal that the IIS's incomplete input information will augment the inherent limitations of existing non-autoregressive models trained under Maximum Likelihood Estimation. In this paper, we propose for the IIS an Adversarial Non-autoregressive Transformer (ANT) which has two features: 1) Position-Aware Self-Modulation to provide more reasonable hidden representations, and 2) Dependency Feed Forward Network to strengthen its capacity in dependency modeling. We compare ANT with other mainstream models in the IIS and demonstrate that ANT can achieve comparable performance with much fewer decoding iterations. Furthermore, we show its great potential in various applications like latent interpolation and semi-supervised learning.

Human activity recognition (HAR) is a key challenge in pervasive computing and its solutions have been presented based on various disciplines. Specifically, for HAR in a smart space without privacy and accessibility issues, data streams generated by deployed pervasive sensors are leveraged. In this paper, we focus on a group activity by which a group of users perform a collaborative task without user identification and propose an efficient group activity recognition scheme which extracts causality patterns from pervasive sensor event sequences generated by a group of users to support as good recognition accuracy as the state-of-the-art graphical model. To filter out irrelevant noise events from a given data stream, a set of rules is leveraged to highlight causally related events. Then, a pattern-tree algorithm extracts frequent causal patterns by means of a growing tree structure. Based on the extracted patterns, a weighted sum-based pattern matching algorithm computes the likelihoods of stored group activities to the given test event sequence by means of matched event pattern counts for group activity recognition. We evaluate the proposed scheme using the data collected from our testbed and CASAS datasets where users perform their tasks on a daily basis and validate its effectiveness in a real environment. Experiment results show that the proposed scheme performs higher recognition accuracy and with a small amount of runtime overhead than the existing schemes.

Mixed linear regression (MLR) is a powerful model for characterizing nonlinear relationships by utilizing a mixture of linear regression sub-models. The identification of MLR is a fundamental problem, where most of the existing results focus on offline algorithms, rely on independent and identically distributed (i.i.d) data assumptions, and provide local convergence results only. This paper investigates the online identification and data clustering problems for two basic classes of MLRs, by introducing two corresponding new online identification algorithms based on the expectation-maximization (EM) principle. It is shown that both algorithms will converge globally without resorting to the traditional i.i.d data assumptions. The main challenge in our investigation lies in the fact that the gradient of the maximum likelihood function does not have a unique zero, and a key step in our analysis is to establish the stability of the corresponding differential equation in order to apply the celebrated Ljung's ODE method. It is also shown that the within-cluster error and the probability that the new data is categorized into the correct cluster are asymptotically the same as those in the case of known parameters. Finally, numerical simulations are provided to verify the effectiveness of our online algorithms.

Temporal Difference (TD) algorithms are widely used in Deep Reinforcement Learning (RL). Their performance is heavily influenced by the size of the neural network. While in supervised learning, the regime of over-parameterization and its benefits are well understood, the situation in RL is much less clear. In this paper, we present a theoretical analysis of the influence of network size and $l_2$-regularization on performance. We identify the ratio between the number of parameters and the number of visited states as a crucial factor and define over-parameterization as the regime when it is larger than one. Furthermore, we observe a double descent phenomenon, i.e., a sudden drop in performance around the parameter/state ratio of one. Leveraging random features and the lazy training regime, we study the regularized Least-Square Temporal Difference (LSTD) algorithm in an asymptotic regime, as both the number of parameters and states go to infinity, maintaining a constant ratio. We derive deterministic limits of both the empirical and the true Mean-Square Bellman Error (MSBE) that feature correction terms responsible for the double-descent. Correction terms vanish when the $l_2$-regularization is increased or the number of unvisited states goes to zero. Numerical experiments with synthetic and small real-world environments closely match the theoretical predictions.

北京阿比特科技有限公司