Quantized neural networks (QNNs) have received increasing attention in resource-constrained scenarios due to their exceptional generalizability. However, their robustness against realistic black-box adversarial attacks has not been extensively studied. In this scenario, adversarial transferability is pursued across QNNs with different quantization bitwidths, which particularly involve unknown architectures and defense methods. Previous studies claim that transferability is difficult to achieve across QNNs with different bitwidths on the condition that they share the same architecture. However, we discover that under different architectures, transferability can be largely improved by using a QNN quantized with an extremely low bitwidth as the substitute model. We further improve the attack transferability by proposing \textit{quantization aware attack} (QAA), which fine-tunes a QNN substitute model with a multiple-bitwidth training objective. In particular, we demonstrate that QAA addresses the two issues that are commonly known to hinder transferability: 1) quantization shifts and 2) gradient misalignments. Extensive experimental results validate the high transferability of the QAA to diverse target models. For instance, when adopting the ResNet-34 substitute model on ImageNet, QAA outperforms the current best attack in attacking standardly trained DNNs, adversarially trained DNNs, and QNNs with varied bitwidths by 4.3\% $\sim$ 20.9\%, 8.7\% $\sim$ 15.5\%, and 2.6\% $\sim$ 31.1\% (absolute), respectively. In addition, QAA is efficient since it only takes one epoch for fine-tuning. In the end, we empirically explain the effectiveness of QAA from the view of the loss landscape. Our code is available at ~\url{//github.com/yyl-github-1896/QAA/}.
Monocular depth estimation (MDE) has advanced significantly, primarily through the integration of convolutional neural networks (CNNs) and more recently, Transformers. However, concerns about their susceptibility to adversarial attacks have emerged, especially in safety-critical domains like autonomous driving and robotic navigation. Existing approaches for assessing CNN-based depth prediction methods have fallen short in inducing comprehensive disruptions to the vision system, often limited to specific local areas. In this paper, we introduce SSAP (Shape-Sensitive Adversarial Patch), a novel approach designed to comprehensively disrupt monocular depth estimation (MDE) in autonomous navigation applications. Our patch is crafted to selectively undermine MDE in two distinct ways: by distorting estimated distances or by creating the illusion of an object disappearing from the system's perspective. Notably, our patch is shape-sensitive, meaning it considers the specific shape and scale of the target object, thereby extending its influence beyond immediate proximity. Furthermore, our patch is trained to effectively address different scales and distances from the camera. Experimental results demonstrate that our approach induces a mean depth estimation error surpassing 0.5, impacting up to 99% of the targeted region for CNN-based MDE models. Additionally, we investigate the vulnerability of Transformer-based MDE models to patch-based attacks, revealing that SSAP yields a significant error of 0.59 and exerts substantial influence over 99% of the target region on these models.
Backdoor attacks, representing an emerging threat to the integrity of deep neural networks, have garnered significant attention due to their ability to compromise deep learning systems clandestinely. While numerous backdoor attacks occur within the digital realm, their practical implementation in real-world prediction systems remains limited and vulnerable to disturbances in the physical world. Consequently, this limitation has given rise to the development of physical backdoor attacks, where trigger objects manifest as physical entities within the real world. However, creating the requisite dataset to train or evaluate a physical backdoor model is a daunting task, limiting the backdoor researchers and practitioners from studying such physical attack scenarios. This paper unleashes a recipe that empowers backdoor researchers to effortlessly create a malicious, physical backdoor dataset based on advances in generative modeling. Particularly, this recipe involves 3 automatic modules: suggesting the suitable physical triggers, generating the poisoned candidate samples (either by synthesizing new samples or editing existing clean samples), and finally refining for the most plausible ones. As such, it effectively mitigates the perceived complexity associated with creating a physical backdoor dataset, transforming it from a daunting task into an attainable objective. Extensive experiment results show that datasets created by our "recipe" enable adversaries to achieve an impressive attack success rate on real physical world data and exhibit similar properties compared to previous physical backdoor attack studies. This paper offers researchers a valuable toolkit for studies of physical backdoors, all within the confines of their laboratories.
Deep neural networks have exhibited substantial success in the field of Natural Language Processing (NLP) and ensuring their safety and reliability is crucial: there are safety critical contexts where such models must be robust to variability or attack, and give guarantees over their output. Unlike Computer Vision, NLP lacks a unified verification methodology and, despite recent advancements in literature, they are often light on the pragmatical issues of NLP verification. In this paper, we make an attempt to distil and evaluate general components of an NLP verification pipeline, that emerges from the progress in the field to date. Our contributions are two-fold. Firstly, we give a general characterisation of verifiable subspaces that result from embedding sentences into continuous spaces. We identify, and give an effective method to deal with, the technical challenge of semantic generalisability of verified subspaces; and propose it as a standard metric in the NLP verification pipelines (alongside with the standard metrics of model accuracy and model verifiability). Secondly, we propose a general methodology to analyse the effect of the embedding gap, a problem that refers to the discrepancy between verification of geometric subpspaces on the one hand, and semantic meaning of sentences which the geometric subspaces are supposed to represent, on the other hand. In extreme cases, poor choices in embedding of sentences may invalidate verification results. We propose a number of practical NLP methods that can help to identify the effects of the embedding gap; and in particular we propose the metric of falsifiability of semantic subpspaces as another fundamental metric to be reported as part of the NLP verification pipeline. We believe that together these general principles pave the way towards a more consolidated and effective development of this new domain.
Graph neural networks (GNNs) have attracted significant attention for their outstanding performance in graph learning and node classification tasks. However, their vulnerability to adversarial attacks, particularly through susceptible nodes, poses a challenge in decision-making. The need for robust graph summarization is evident in adversarial challenges resulting from the propagation of attacks throughout the entire graph. In this paper, we address both performance and adversarial robustness in graph input by introducing the novel technique SHERD (Subgraph Learning Hale through Early Training Representation Distances). SHERD leverages information from layers of a partially trained graph convolutional network (GCN) to detect susceptible nodes during adversarial attacks using standard distance metrics. The method identifies "vulnerable (bad)" nodes and removes such nodes to form a robust subgraph while maintaining node classification performance. Through our experiments, we demonstrate the increased performance of SHERD in enhancing robustness by comparing the network's performance on original and subgraph inputs against various baselines alongside existing adversarial attacks. Our experiments across multiple datasets, including citation datasets such as Cora, Citeseer, and Pubmed, as well as microanatomical tissue structures of cell graphs in the placenta, highlight that SHERD not only achieves substantial improvement in robust performance but also outperforms several baselines in terms of node classification accuracy and computational complexity.
Mobile robots are being used on a large scale in various crowded situations and become part of our society. The socially acceptable navigation behavior of a mobile robot with individual human consideration is an essential requirement for scalable applications and human acceptance. Deep Reinforcement Learning (DRL) approaches are recently used to learn a robot's navigation policy and to model the complex interactions between robots and humans. We propose to divide existing DRL-based navigation approaches based on the robot's exhibited social behavior and distinguish between social collision avoidance with a lack of social behavior and socially aware approaches with explicit predefined social behavior. In addition, we propose a novel socially integrated navigation approach where the robot's social behavior is adaptive and emerges from the interaction with humans. The formulation of our approach is derived from a sociological definition, which states that social acting is oriented toward the acting of others. The DRL policy is trained in an environment where other agents interact socially integrated and reward the robot's behavior individually. The simulation results indicate that the proposed socially integrated navigation approach outperforms a socially aware approach in terms of distance traveled, time to completion, and negative impact on all agents within the environment.
Multimodal large language models (MLLMs) have recently achieved impressive general-purpose vision-language capabilities through visual instruction tuning. However, current MLLMs primarily focus on image-level or box-level understanding, falling short in achieving fine-grained vision-language alignment at pixel level. Besides, the lack of mask-based instruction data limits their advancements. In this paper, we propose Osprey, a mask-text instruction tuning approach, to extend MLLMs by incorporating fine-grained mask regions into language instruction, aiming at achieving pixel-wise visual understanding. To achieve this goal, we first meticulously curate a mask-based region-text dataset with 724K samples, and then design a vision-language model by injecting pixel-level representation into LLM. Specifically, Osprey adopts a convolutional CLIP backbone as the vision encoder and employs a mask-aware visual extractor to extract precise visual mask features from high resolution input. Experimental results demonstrate Osprey's superiority in various region understanding tasks, showcasing its new capability for pixel-level instruction tuning. In particular, Osprey can be integrated with Segment Anything Model (SAM) seamlessly to obtain multi-granularity semantics. The source code, dataset and demo can be found at //github.com/CircleRadon/Osprey.
Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.
Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.
Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.