Algorithms for initializing particle distribution in SPH simulations of complex geometries have been proven essential for improving the accuracy of SPH simulations. However, no such algorithms exist for boundary integral SPH models, which can model complex geometries without needing virtual particle layers. This study introduces a Boundary Integral based Particle Initialization (BIPI) algorithm. It consists of a particle-shifting technique carefully designed to redistribute particles to fit the boundary by using the boundary integral formulation for particles adjacent to the boundary. The proposed BIPI algorithm gives special consideration to particles adjacent to the boundary to prevent artificial volume compression. It can automatically produce a "uniform" particle distribution with reduced and stabilized concentration gradient for domains with complex geometrical shapes. Finally, a number of examples are presented to demonstrate the effectiveness of the proposed algorithm.
We present a novel and flexible framework for localized tuning of Hamiltonian Monte Carlo samplers by sampling the algorithm's tuning parameters conditionally based on the position and momentum at each step. For adaptively sampling path lengths, we show that randomized Hamiltonian Monte Carlo, the No-U-Turn Sampler, and the Apogee-to-Apogee Path Sampler all fit within this unified framework as special cases. The framework is illustrated with a simple alternative to the No-U-Turn Sampler for locally adapting path lengths.
Boundary condition (BC) calibration to assimilate clinical measurements is an essential step in any subject-specific simulation of cardiovascular fluid dynamics. Bayesian calibration approaches have successfully quantified the uncertainties inherent in identified parameters. Yet, routinely estimating the posterior distribution for all BC parameters in 3D simulations has been unattainable due to the infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors using results from a single high-fidelity three-dimensional (3D) model evaluation. We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. We validate this approach in a publicly available dataset of N=72 subject-specific vascular models. We found that optimizing 0D models to match 3D data a priori lowered their median approximation error by nearly one order of magnitude. In a subset of models, we confirm that the optimized 0D models still generalize to a wide range of BCs. Finally, we present the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model using SMC. We further validate that the 0D-derived posterior is a good approximation of the 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.
In many practical applications, evaluating the joint impact of combinations of environmental variables is important for risk management and structural design analysis. When such variables are considered simultaneously, non-stationarity can exist within both the marginal distributions and dependence structure, resulting in complex data structures. In the context of extremes, few methods have been proposed for modelling trends in extremal dependence, even though capturing this feature is important for quantifying joint impact. Moreover, most proposed techniques are only applicable to data structures exhibiting asymptotic dependence. Motivated by observed dependence trends of data from the UK Climate Projections, we propose a novel semi-parametric modelling framework for bivariate extremal dependence structures. This framework allows us to capture a wide variety of dependence trends for data exhibiting asymptotic independence. When applied to the climate projection dataset, our model detects significant dependence trends in observations and, in combination with models for marginal non-stationarity, can be used to produce estimates of bivariate risk measures at future time points.
Generalized cross-validation (GCV) is a widely-used method for estimating the squared out-of-sample prediction risk that employs a scalar degrees of freedom adjustment (in a multiplicative sense) to the squared training error. In this paper, we examine the consistency of GCV for estimating the prediction risk of arbitrary ensembles of penalized least-squares estimators. We show that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this shortcoming, we identify a correction that involves an additional scalar correction (in an additive sense) based on degrees of freedom adjusted training errors from each ensemble component. The proposed estimator (termed CGCV) maintains the computational advantages of GCV and requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator stems from a finer inspection of the ensemble risk decomposition and two intermediate risk estimators for the components in this decomposition. We provide a non-asymptotic analysis of the CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators under Gaussian features and a linear response model. Furthermore, in the special case of ridge regression, we extend the analysis to general feature and response distributions using random matrix theory, which establishes model-free uniform consistency of CGCV.
Machine learning-based reliability analysis methods have shown great advancements for their computational efficiency and accuracy. Recently, many efficient learning strategies have been proposed to enhance the computational performance. However, few of them explores the theoretical optimal learning strategy. In this article, we propose several theorems that facilitates such exploration. Specifically, cases that considering and neglecting the correlations among the candidate design samples are well elaborated. Moreover, we prove that the well-known U learning function can be reformulated to the optimal learning function for the case neglecting the Kriging correlation. In addition, the theoretical optimal learning strategy for sequential multiple training samples enrichment is also mathematically explored through the Bayesian estimate with the corresponding lost functions. Simulation results show that the optimal learning strategy considering the Kriging correlation works better than that neglecting the Kriging correlation and other state-of-the art learning functions from the literatures in terms of the reduction of number of evaluations of performance function. However, the implementation needs to investigate very large computational resource.
A CUR factorization is often utilized as a substitute for the singular value decomposition (SVD), especially when a concrete interpretation of the singular vectors is challenging. Moreover, if the original data matrix possesses properties like nonnegativity and sparsity, a CUR decomposition can better preserve them compared to the SVD. An essential aspect of this approach is the methodology used for selecting a subset of columns and rows from the original matrix. This study investigates the effectiveness of \emph{one-round sampling} and iterative subselection techniques and introduces new iterative subselection strategies based on iterative SVDs. One provably appropriate technique for index selection in constructing a CUR factorization is the discrete empirical interpolation method (DEIM). Our contribution aims to improve the approximation quality of the DEIM scheme by iteratively invoking it in several rounds, in the sense that we select subsequent columns and rows based on the previously selected ones. Thus, we modify $A$ after each iteration by removing the information that has been captured by the previously selected columns and rows. We also discuss how iterative procedures for computing a few singular vectors of large data matrices can be integrated with the new iterative subselection strategies. We present the results of numerical experiments, providing a comparison of one-round sampling and iterative subselection techniques, and demonstrating the improved approximation quality associated with using the latter.
Knowledge sharing about emerging threats is crucial in the rapidly advancing field of cybersecurity and forms the foundation of Cyber Threat Intelligence (CTI). In this context, Large Language Models are becoming increasingly significant in the field of cybersecurity, presenting a wide range of opportunities. This study surveys the performance of ChatGPT, GPT4all, Dolly, Stanford Alpaca, Alpaca-LoRA, Falcon, and Vicuna chatbots in binary classification and Named Entity Recognition (NER) tasks performed using Open Source INTelligence (OSINT). We utilize well-established data collected in previous research from Twitter to assess the competitiveness of these chatbots when compared to specialized models trained for those tasks. In binary classification experiments, Chatbot GPT-4 as a commercial model achieved an acceptable F1 score of 0.94, and the open-source GPT4all model achieved an F1 score of 0.90. However, concerning cybersecurity entity recognition, all evaluated chatbots have limitations and are less effective. This study demonstrates the capability of chatbots for OSINT binary classification and shows that they require further improvement in NER to effectively replace specially trained models. Our results shed light on the limitations of the LLM chatbots when compared to specialized models, and can help researchers improve chatbots technology with the objective to reduce the required effort to integrate machine learning in OSINT-based CTI tools.
Fluid motion can be considered as a point cloud transformation when using the SPH method. Compared to traditional numerical analysis methods, using machine learning techniques to learn physics simulations can achieve near-accurate results, while significantly increasing efficiency. In this paper, we propose an innovative approach for 3D fluid simulations utilizing an Attention-based Dual-pipeline Network, which employs a dual-pipeline architecture, seamlessly integrated with an Attention-based Feature Fusion Module. Unlike previous methods, which often make difficult trade-offs between global fluid control and physical law constraints, we find a way to achieve a better balance between these two crucial aspects with a well-designed dual-pipeline approach. Additionally, we design a Type-aware Input Module to adaptively recognize particles of different types and perform feature fusion afterward, such that fluid-solid coupling issues can be better dealt with. Furthermore, we propose a new dataset, Tank3D, to further explore the network's ability to handle more complicated scenes. The experiments demonstrate that our approach not only attains a quantitative enhancement in various metrics, surpassing the state-of-the-art methods but also signifies a qualitative leap in neural network-based simulation by faithfully adhering to the physical laws. Code and video demonstrations are available at //github.com/chenyu-xjtu/DualFluidNet.
Recently surrogate functions based on the tail inequalities were developed to evaluate the chance constraints in the context of evolutionary computation and several Pareto optimization algorithms using these surrogates were successfully applied in optimizing chance-constrained monotone submodular problems. However, the difference in performance between algorithms using the surrogates and those employing the direct sampling-based evaluation remains unclear. Within the paper, a sampling-based method is proposed to directly evaluate the chance constraint. Furthermore, to address the problems with more challenging settings, an enhanced GSEMO algorithm integrated with an adaptive sliding window, called ASW-GSEMO, is introduced. In the experiments, the ASW-GSEMO employing the sampling-based approach is tested on the chance-constrained version of the maximum coverage problem with different settings. Its results are compared with those from other algorithms using different surrogate functions. The experimental findings indicate that the ASW-GSEMO with the sampling-based evaluation approach outperforms other algorithms, highlighting that the performances of algorithms using different evaluation methods are comparable. Additionally, the behaviors of ASW-GSEMO are visualized to explain the distinctions between it and the algorithms utilizing the surrogate functions.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.