The bandit problem with graph feedback, proposed in [Mannor and Shamir, NeurIPS 2011], is modeled by a directed graph $G=(V,E)$ where $V$ is the collection of bandit arms, and once an arm is triggered, all its incident arms are observed. A fundamental question is how the structure of the graph affects the min-max regret. We propose the notions of the fractional weak domination number $\delta^*$ and the $k$-packing independence number capturing upper bound and lower bound for the regret respectively. We show that the two notions are inherently connected via aligning them with the linear program of the weakly dominating set and its dual -- the fractional vertex packing set respectively. Based on this connection, we utilize the strong duality theorem to prove a general regret upper bound $O\left(\left( \delta^*\log |V|\right)^{\frac{1}{3}}T^{\frac{2}{3}}\right)$ and a lower bound $\Omega\left(\left(\delta^*/\alpha\right)^{\frac{1}{3}}T^{\frac{2}{3}}\right)$ where $\alpha$ is the integrality gap of the dual linear program. Therefore, our bounds are tight up to a $\left(\log |V|\right)^{\frac{1}{3}}$ factor on graphs with bounded integrality gap for the vertex packing problem including trees and graphs with bounded degree. Moreover, we show that for several special families of graphs, we can get rid of the $\left(\log |V|\right)^{\frac{1}{3}}$ factor and establish optimal regret.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
One of the difficulties of conversion rate (CVR) prediction is that the conversions can delay and take place long after the clicks. The delayed feedback poses a challenge: fresh data are beneficial to continuous training but may not have complete label information at the time they are ingested into the training pipeline. To balance model freshness and label certainty, previous methods set a short waiting window or even do not wait for the conversion signal. If conversion happens outside the waiting window, this sample will be duplicated and ingested into the training pipeline with a positive label. However, these methods have some issues. First, they assume the observed feature distribution remains the same as the actual distribution. But this assumption does not hold due to the ingestion of duplicated samples. Second, the certainty of the conversion action only comes from the positives. But the positives are scarce as conversions are sparse in commercial systems. These issues induce bias during the modeling of delayed feedback. In this paper, we propose DElayed FEedback modeling with Real negatives (DEFER) method to address these issues. The proposed method ingests real negative samples into the training pipeline. The ingestion of real negatives ensures the observed feature distribution is equivalent to the actual distribution, thus reducing the bias. The ingestion of real negatives also brings more certainty information of the conversion. To correct the distribution shift, DEFER employs importance sampling to weigh the loss function. Experimental results on industrial datasets validate the superiority of DEFER. DEFER have been deployed in the display advertising system of Alibaba, obtaining over 6.0% improvement on CVR in several scenarios. The code and data in this paper are now open-sourced {//github.com/gusuperstar/defer.git}.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Contextual multi-armed bandit (MAB) achieves cutting-edge performance on a variety of problems. When it comes to real-world scenarios such as recommendation system and online advertising, however, it is essential to consider the resource consumption of exploration. In practice, there is typically non-zero cost associated with executing a recommendation (arm) in the environment, and hence, the policy should be learned with a fixed exploration cost constraint. It is challenging to learn a global optimal policy directly, since it is a NP-hard problem and significantly complicates the exploration and exploitation trade-off of bandit algorithms. Existing approaches focus on solving the problems by adopting the greedy policy which estimates the expected rewards and costs and uses a greedy selection based on each arm's expected reward/cost ratio using historical observation until the exploration resource is exhausted. However, existing methods are hard to extend to infinite time horizon, since the learning process will be terminated when there is no more resource. In this paper, we propose a hierarchical adaptive contextual bandit method (HATCH) to conduct the policy learning of contextual bandits with a budget constraint. HATCH adopts an adaptive method to allocate the exploration resource based on the remaining resource/time and the estimation of reward distribution among different user contexts. In addition, we utilize full of contextual feature information to find the best personalized recommendation. Finally, in order to prove the theoretical guarantee, we present a regret bound analysis and prove that HATCH achieves a regret bound as low as $O(\sqrt{T})$. The experimental results demonstrate the effectiveness and efficiency of the proposed method on both synthetic data sets and the real-world applications.
A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.
Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.
Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.
Gradient-based meta-learning techniques are both widely applicable and proficient at solving challenging few-shot learning and fast adaptation problems. However, they have the practical difficulties of operating in high-dimensional parameter spaces in extreme low-data regimes. We show that it is possible to bypass these limitations by learning a low-dimensional latent generative representation of model parameters and performing gradient-based meta-learning in this space with latent embedding optimization (LEO), effectively decoupling the gradient-based adaptation procedure from the underlying high-dimensional space of model parameters. Our evaluation shows that LEO can achieve state-of-the-art performance on the competitive 5-way 1-shot miniImageNet classification task.
Recommender systems (RSs) provide an effective way of alleviating the information overload problem by selecting personalized items for different users. Latent factors based collaborative filtering (CF) has become the popular approaches for RSs due to its accuracy and scalability. Recently, online social networks and user-generated content provide diverse sources for recommendation beyond ratings. Although {\em social matrix factorization} (Social MF) and {\em topic matrix factorization} (Topic MF) successfully exploit social relations and item reviews, respectively, both of them ignore some useful information. In this paper, we investigate the effective data fusion by combining the aforementioned approaches. First, we propose a novel model {\em \mbox{MR3}} to jointly model three sources of information (i.e., ratings, item reviews, and social relations) effectively for rating prediction by aligning the latent factors and hidden topics. Second, we incorporate the implicit feedback from ratings into the proposed model to enhance its capability and to demonstrate its flexibility. We achieve more accurate rating prediction on real-life datasets over various state-of-the-art methods. Furthermore, we measure the contribution from each of the three data sources and the impact of implicit feedback from ratings, followed by the sensitivity analysis of hyperparameters. Empirical studies demonstrate the effectiveness and efficacy of our proposed model and its extension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.