This paper introduces a novel class of PICOD($t$) problems referred to as $g$-group complete-$S$ PICOD($t$) problems. It constructs a multi-stage achievability scheme to generate pliable index codes for group complete PICOD problems when $S = \{s\}$ is a singleton set. Using the maximum acyclic induced subgraph bound, lower bounds on the broadcast rate are derived for singleton $S$, which establishes the optimality of the achievability scheme for a range of values for $t$ and for any $g$ and $s$. For all other values, it is shown that the achievability scheme is optimal among the restricted class of broadcast codes.
Generative adversarial networks (GANs) are unsupervised learning methods for training a generator distribution to produce samples that approximate those drawn from a target distribution. Many such methods can be formulated as minimization of a metric or divergence. Recent works have proven the statistical consistency of GANs that are based on integral probability metrics (IPMs), e.g., WGAN which is based on the 1-Wasserstein metric. IPMs are defined by optimizing a linear functional (difference of expectations) over a space of discriminators. A much larger class of GANs, which allow for the use of nonlinear objective functionals, can be constructed using $(f,\Gamma)$-divergences; these generalize and interpolate between IPMs and $f$-divergences (e.g., KL or $\alpha$-divergences). Instances of $(f,\Gamma)$-GANs have been shown to exhibit improved performance in a number of applications. In this work we study the statistical consistency of $(f,\Gamma)$-GANs for general $f$ and $\Gamma$. Specifically, we derive finite-sample concentration inequalities. These derivations require novel arguments due to nonlinearity of the objective functional. We demonstrate that our new results reduce to the known results for IPM-GANs in the appropriate limit while also significantly extending the domain of applicability of this theory.
Identifying user's opinions and stances in long conversation threads on various topics can be extremely critical for enhanced personalization, market research, political campaigns, customer service, conflict resolution, targeted advertising, and content moderation. Hence, training language models to automate this task is critical. However, to train such models, gathering manual annotations has multiple challenges: 1) It is time-consuming and costly; 2) Conversation threads could be very long, increasing chances of noisy annotations; and 3) Interpreting instances where a user changes their opinion within a conversation is difficult because often such transitions are subtle and not expressed explicitly. Inspired by the recent success of large language models (LLMs) for complex natural language processing (NLP) tasks, we leverage Mistral Large and GPT-4 to automate the human annotation process on the following two tasks while also providing reasoning: i) User Stance classification, which involves labeling a user's stance of a post in a conversation on a five-point scale; ii) User Dogmatism classification, which deals with labeling a user's overall opinion in the conversation on a four-point scale. The majority voting on zero-shot, one-shot, and few-shot annotations from these two LLMs on 764 multi-user Reddit conversations helps us curate the USDC dataset. USDC is then used to finetune and instruction-tune multiple deployable small language models for the 5-class stance and 4-class dogmatism classification tasks. We make the code and dataset publicly available [//anonymous.4open.science/r/USDC-0F7F].
The notion of $\alpha$-equivalence between $\lambda$-terms is commonly used to identify terms that are considered equal. However, due to the primitive treatment of free variables, this notion falls short when comparing subterms occurring within a larger context. Depending on the usage of the Barendregt convention (choosing different variable names for all involved binders), it will equate either too few or too many subterms. We introduce a formal notion of context-sensitive $\alpha$-equivalence, where two open terms can be compared within a context that resolves their free variables. We show that this equivalence coincides exactly with the notion of bisimulation equivalence. Furthermore, we present an efficient $O(n\log n)$ runtime hashing scheme that identifies $\lambda$-terms modulo context-sensitive $\alpha$-equivalence, generalizing over traditional bisimulation partitioning algorithms and improving upon a previously established $O(n\log^2 n)$ bound for a hashing modulo ordinary $\alpha$-equivalence by Maziarz et al. Hashing $\lambda$-terms is useful in many applications that require common subterm elimination and structure sharing. We have employed the algorithm to obtain a large-scale, densely packed, interconnected graph of mathematical knowledge from the Coq proof assistant for machine learning purposes.
A Straight-Line Program (SLP) $G$ for a string $T$ is a context-free grammar (CFG) that derives $T$ only, which can be considered as a compressed representation of $T$. In this paper, we show how to encode $G$ in $n \lceil \lg N \rceil + (n + n') \lceil \lg (n+\sigma) \rceil + 4n - 2n' + o(n)$ bits to support random access queries of extracting $T[p..q]$ in worst-case $O(\log N + p - q)$ time, where $N$ is the length of $T$, $\sigma$ is the alphabet size, $n$ is the number of variables in $G$ and $n' \le n$ is the number of symmetric centroid paths in the DAG representation for $G$.
In the Priority $k$-Supplier problem the input consists of a metric space $(F \cup C, d)$ over set of facilities $F$ and a set of clients $C$, an integer $k > 0$, and a non-negative radius $r_v$ for each client $v \in C$. The goal is to select $k$ facilities $S \subseteq F$ to minimize $\max_{v \in C} \frac{d(v,S)}{r_v}$ where $d(v,S)$ is the distance of $v$ to the closes facility in $S$. This problem generalizes the well-studied $k$-Center and $k$-Supplier problems, and admits a $3$-approximation [Plesn\'ik, 1987, Bajpai et al., 2022. In this paper we consider two outlier versions. The Priority $k$-Supplier with Outliers problem [Bajpai et al., 2022] allows a specified number of outliers to be uncovered, and the Priority Colorful $k$-Supplier problem is a further generalization where clients are partitioned into $c$ colors and each color class allows a specified number of outliers. These problems are partly motivated by recent interest in fairness in clustering and other optimization problems involving algorithmic decision making. We build upon the work of [Bajpai et al., 2022] and improve their $9$-approximation Priority $k$-Supplier with Outliers problem to a $1+3\sqrt{3}\approx 6.196$-approximation. For the Priority Colorful $k$-Supplier problem, we present the first set of approximation algorithms. For the general case with $c$ colors, we achieve a $17$-pseudo-approximation using $k+2c-1$ centers. For the setting of $c=2$, we obtain a $7$-approximation in random polynomial time, and a $2+\sqrt{5}\approx 4.236$-pseudo-approximation using $k+1$ centers.
Methods of computational quantum chemistry provide accurate approximations of molecular properties crucial for computer-aided drug discovery and other areas of chemical science. However, high computational complexity limits the scalability of their applications. Neural network potentials (NNPs) are a promising alternative to quantum chemistry methods, but they require large and diverse datasets for training. This work presents a new dataset and benchmark called $\nabla^2$DFT that is based on the nablaDFT. It contains twice as much molecular structures, three times more conformations, new data types and tasks, and state-of-the-art models. The dataset includes energies, forces, 17 molecular properties, Hamiltonian and overlap matrices, and a wavefunction object. All calculations were performed at the DFT level ($\omega$B97X-D/def2-SVP) for each conformation. Moreover, $\nabla^2$DFT is the first dataset that contains relaxation trajectories for a substantial number of drug-like molecules. We also introduce a novel benchmark for evaluating NNPs in molecular property prediction, Hamiltonian prediction, and conformational optimization tasks. Finally, we propose an extendable framework for training NNPs and implement 10 models within it.
Locally repairable codes (LRCs) have attracted a lot of attention due to their applications in distributed storage systems. In this paper, we provide new constructions of optimal $(2, \delta)$-LRCs over $\mathbb{F}_q$ with flexible parameters. Firstly, employing techniques from finite geometry, we introduce a simple yet useful condition to ensure that a punctured simplex code becomes a $(2, \delta)$-LRC. It is worth noting that this condition only imposes a requirement on the size of the puncturing set. Secondly, utilizing character sums over finite fields and Krawtchouk polynomials, we determine the parameters of more punctured simplex codes with puncturing sets of new structures. Several infinite families of LRCs with new parameters are derived. All of our new LRCs are optimal with respect to the generalized Cadambe-Mazumdar bound and some of them are also Griesmer codes or distance-optimal codes.
We study the performance of empirical risk minimization on the $p$-norm linear regression problem for $p \in (1, \infty)$. We show that, in the realizable case, under no moment assumptions, and up to a distribution-dependent constant, $O(d)$ samples are enough to exactly recover the target. Otherwise, for $p \in [2, \infty)$, and under weak moment assumptions on the target and the covariates, we prove a high probability excess risk bound on the empirical risk minimizer whose leading term matches, up to a constant that depends only on $p$, the asymptotically exact rate. We extend this result to the case $p \in (1, 2)$ under mild assumptions that guarantee the existence of the Hessian of the risk at its minimizer.
Fairness in decision-making processes is often quantified using probabilistic metrics. However, these metrics may not fully capture the real-world consequences of unfairness. In this article, we adopt a utility-based approach to more accurately measure the real-world impacts of decision-making process. In particular, we show that if the concept of $\varepsilon$-fairness is employed, it can possibly lead to outcomes that are maximally unfair in the real-world context. Additionally, we address the common issue of unavailable data on false negatives by proposing a reduced setting that still captures essential fairness considerations. We illustrate our findings with two real-world examples: college admissions and credit risk assessment. Our analysis reveals that while traditional probability-based evaluations might suggest fairness, a utility-based approach uncovers the necessary actions to truly achieve equality. For instance, in the college admission case, we find that enhancing completion rates is crucial for ensuring fairness. Summarizing, this paper highlights the importance of considering the real-world context when evaluating fairness.
We prove in this paper that there is a language $L_d$ accepted by some nondeterministic Turing machines but not by any ${\rm co}\mathcal{NP}$-machines (defined later). We further show that $L_d$ is in $\mathcal{NP}$, thus proving that $\mathcal{NP}\neq{\rm co}\mathcal{NP}$. The techniques used in this paper are lazy-diagonalization and the novel new technique developed in author's recent work \cite{Lin21}. As a by-product, we reach the important result \cite{Lin21} that $\mathcal{P}\neq\mathcal{NP}$ once again, which is clear from the above outcome and the well-known fact that $\mathcal{P}={\rm co}\mathcal{P}$. Other direct consequences are also summarized.