亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multiple lines of evidence suggest that predictive models may benefit from algorithmic triage. Under algorithmic triage, a predictive model does not predict all instances but instead defers some of them to human experts. However, the interplay between the prediction accuracy of the model and the human experts under algorithmic triage is not well understood. In this work, we start by formally characterizing under which circumstances a predictive model may benefit from algorithmic triage. In doing so, we also demonstrate that models trained for full automation may be suboptimal under triage. Then, given any model and desired level of triage, we show that the optimal triage policy is a deterministic threshold rule in which triage decisions are derived deterministically by thresholding the difference between the model and human errors on a per-instance level. Building upon these results, we introduce a practical gradient-based algorithm that is guaranteed to find a sequence of triage policies and predictive models of increasing performance. Experiments on a wide variety of supervised learning tasks using synthetic and real data from two important applications -- content moderation and scientific discovery -- illustrate our theoretical results and show that the models and triage policies provided by our gradient-based algorithm outperform those provided by several competitive baselines.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · state-of-the-art · Extensibility · 學成 · CIFAR-10 ·
2022 年 1 月 24 日

State-of-the-art machine learning models are routinely trained on large-scale distributed clusters. Crucially, such systems can be compromised when some of the computing devices exhibit abnormal (Byzantine) behavior and return arbitrary results to the parameter server (PS). This behavior may be attributed to a plethora of reasons, including system failures and orchestrated attacks. Existing work suggests robust aggregation and/or computational redundancy to alleviate the effect of distorted gradients. However, most of these schemes are ineffective when an adversary knows the task assignment and can choose the attacked workers judiciously to induce maximal damage. Our proposed method Aspis assigns gradient computations to worker nodes using a subset-based assignment which allows for multiple consistency checks on the behavior of a worker node. Examination of the calculated gradients and post-processing (clique-finding in an appropriately constructed graph) by the central node allows for efficient detection and subsequent exclusion of adversaries from the training process. We prove the Byzantine resilience and detection guarantees of Aspis under weak and strong attacks and extensively evaluate the system on various large-scale training scenarios. The principal metric for our experiments is the test accuracy, for which we demonstrate a significant improvement of about 30% compared to many state-of-the-art approaches on the CIFAR-10 dataset. The corresponding reduction of the fraction of corrupted gradients ranges from 16% to 99%.

Evolutionary Algorithms (EAs) and Deep Reinforcement Learning (DRL) have recently been combined to integrate the advantages of the two solutions for better policy learning. However, in existing hybrid methods, EA is used to directly train the policy network, which will lead to sample inefficiency and unpredictable impact on the policy performance. To better integrate these two approaches and avoid the drawbacks caused by the introduction of EA, we devote ourselves to devising a more efficient and reasonable method of combining EA and DRL. In this paper, we propose Evolutionary Action Selection-Twin Delayed Deep Deterministic Policy Gradient (EAS-TD3), a novel combination of EA and DRL. In EAS, we focus on optimizing the action chosen by the policy network and attempt to obtain high-quality actions to guide policy learning through an evolutionary algorithm. We conduct several experiments on challenging continuous control tasks. The result shows that EAS-TD3 shows superior performance over other state-of-art methods.

Discovering causal structure among a set of variables is a fundamental problem in many empirical sciences. Traditional score-based casual discovery methods rely on various local heuristics to search for a Directed Acyclic Graph (DAG) according to a predefined score function. While these methods, e.g., greedy equivalence search, may have attractive results with infinite samples and certain model assumptions, they are usually less satisfactory in practice due to finite data and possible violation of assumptions. Motivated by recent advances in neural combinatorial optimization, we propose to use Reinforcement Learning (RL) to search for the DAG with the best scoring. Our encoder-decoder model takes observable data as input and generates graph adjacency matrices that are used to compute rewards. The reward incorporates both the predefined score function and two penalty terms for enforcing acyclicity. In contrast with typical RL applications where the goal is to learn a policy, we use RL as a search strategy and our final output would be the graph, among all graphs generated during training, that achieves the best reward. We conduct experiments on both synthetic and real datasets, and show that the proposed approach not only has an improved search ability but also allows a flexible score function under the acyclicity constraint.

We study the link between generalization and interference in temporal-difference (TD) learning. Interference is defined as the inner product of two different gradients, representing their alignment. This quantity emerges as being of interest from a variety of observations about neural networks, parameter sharing and the dynamics of learning. We find that TD easily leads to low-interference, under-generalizing parameters, while the effect seems reversed in supervised learning. We hypothesize that the cause can be traced back to the interplay between the dynamics of interference and bootstrapping. This is supported empirically by several observations: the negative relationship between the generalization gap and interference in TD, the negative effect of bootstrapping on interference and the local coherence of targets, and the contrast between the propagation rate of information in TD(0) versus TD($\lambda$) and regression tasks such as Monte-Carlo policy evaluation. We hope that these new findings can guide the future discovery of better bootstrapping methods.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

In this paper, we investigate the challenges of using reinforcement learning agents for question-answering over knowledge graphs for real-world applications. We examine the performance metrics used by state-of-the-art systems and determine that they are inadequate for such settings. More specifically, they do not evaluate the systems correctly for situations when there is no answer available and thus agents optimized for these metrics are poor at modeling confidence. We introduce a simple new performance metric for evaluating question-answering agents that is more representative of practical usage conditions, and optimize for this metric by extending the binary reward structure used in prior work to a ternary reward structure which also rewards an agent for not answering a question rather than giving an incorrect answer. We show that this can drastically improve the precision of answered questions while only not answering a limited number of previously correctly answered questions. Employing a supervised learning strategy using depth-first-search paths to bootstrap the reinforcement learning algorithm further improves performance.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

Most of previous machine learning algorithms are proposed based on the i.i.d. hypothesis. However, this ideal assumption is often violated in real applications, where selection bias may arise between training and testing process. Moreover, in many scenarios, the testing data is not even available during the training process, which makes the traditional methods like transfer learning infeasible due to their need on prior of test distribution. Therefore, how to address the agnostic selection bias for robust model learning is of paramount importance for both academic research and real applications. In this paper, under the assumption that causal relationships among variables are robust across domains, we incorporate causal technique into predictive modeling and propose a novel Causally Regularized Logistic Regression (CRLR) algorithm by jointly optimize global confounder balancing and weighted logistic regression. Global confounder balancing helps to identify causal features, whose causal effect on outcome are stable across domains, then performing logistic regression on those causal features constructs a robust predictive model against the agnostic bias. To validate the effectiveness of our CRLR algorithm, we conduct comprehensive experiments on both synthetic and real world datasets. Experimental results clearly demonstrate that our CRLR algorithm outperforms the state-of-the-art methods, and the interpretability of our method can be fully depicted by the feature visualization.

Deep learning (DL) is a high dimensional data reduction technique for constructing high-dimensional predictors in input-output models. DL is a form of machine learning that uses hierarchical layers of latent features. In this article, we review the state-of-the-art of deep learning from a modeling and algorithmic perspective. We provide a list of successful areas of applications in Artificial Intelligence (AI), Image Processing, Robotics and Automation. Deep learning is predictive in its nature rather then inferential and can be viewed as a black-box methodology for high-dimensional function estimation.

Deep learning is the mainstream technique for many machine learning tasks, including image recognition, machine translation, speech recognition, and so on. It has outperformed conventional methods in various fields and achieved great successes. Unfortunately, the understanding on how it works remains unclear. It has the central importance to lay down the theoretic foundation for deep learning. In this work, we give a geometric view to understand deep learning: we show that the fundamental principle attributing to the success is the manifold structure in data, namely natural high dimensional data concentrates close to a low-dimensional manifold, deep learning learns the manifold and the probability distribution on it. We further introduce the concepts of rectified linear complexity for deep neural network measuring its learning capability, rectified linear complexity of an embedding manifold describing the difficulty to be learned. Then we show for any deep neural network with fixed architecture, there exists a manifold that cannot be learned by the network. Finally, we propose to apply optimal mass transportation theory to control the probability distribution in the latent space.

北京阿比特科技有限公司