The integration of the Internet of Things (IoT) connects a number of intelligent devices with a minimum of human interference that can interact with one another. IoT is rapidly emerging in the areas of computer science. However, new security problems were posed by the cross-cutting design of the multidisciplinary elements and IoT systems involved in deploying such schemes. Ineffective is the implementation of security protocols, i.e., authentication, encryption, application security, and access network for IoT systems and their essential weaknesses in security. Current security approaches can also be improved to protect the IoT environment effectively. In recent years, deep learning (DL)/ machine learning (ML) has progressed significantly in various critical implementations. Therefore, DL/ML methods are essential to turn IoT systems protection from simply enabling safe contact between IoT systems to intelligence systems in security. This review aims to include an extensive analysis of ML systems and state-of-the-art developments in DL methods to improve enhanced IoT device protection methods. On the other hand, various new insights in machine and deep learning for IoT Securities illustrate how it could help future research. IoT protection risks relating to emerging or essential threats are identified, as well as future IoT device attacks and possible threats associated with each surface. We then carefully analyze DL and ML IoT protection approaches and present each approach's benefits, possibilities, and weaknesses. This review discusses a number of potential challenges and limitations. The future works, recommendations, and suggestions of DL/ML in IoT security are also included.
The security and privacy of smart home systems, particularly from a home user's perspective, have been a very active research area in recent years. However, via a meta-review of 52 review papers covering related topics (published between 2000 and 2021), this paper shows a lack of a more recent literature review on user perspectives of smart home security and privacy since the 2010s. This identified gap motivated us to conduct a systematic literature review (SLR) covering 126 relevant research papers published from 2010 to 2021. Our SLR led to the discovery of a number of important areas where further research is needed; these include holistic methods that consider a more diverse and heterogeneous range of home devices, interactions between multiple home users, complicated data flow between multiple home devices and home users, some less-studied demographic factors, and advanced conceptual frameworks. Based on these findings, we recommended key future research directions, e.g., research for a better understanding of security and privacy aspects in different multi-device and multi-user contexts, and a more comprehensive ontology on the security and privacy of the smart home covering varying types of home devices and behaviors of different types of home users.
In recent years, there has been an increasing interest in incorporating blockchain for the Internet of Things (IoT) to address the inherent issues of IoT, such as single point of failure and data silos. However, blockchain alone cannot ascertain the authenticity and veracity of the data coming from IoT devices. The append-only nature of blockchain exacerbates this issue, as it would not be possible to alter the data once recorded on-chain. Trust and Reputation Management (TRM) is an effective approach to overcome the aforementioned trust issues. However, designing TRM frameworks for blockchain-enabled IoT applications is a non-trivial task, as each application has its unique trust challenges with their unique features and requirements. In this paper, we present our experiences in designing TRM framework for various blockchain-enabled IoT applications to provide insights and highlight open research challenges for future opportunities.
Resource management in computing is a very challenging problem that involves making sequential decisions. Resource limitations, resource heterogeneity, dynamic and diverse nature of workload, and the unpredictability of fog/edge computing environments have made resource management even more challenging to be considered in the fog landscape. Recently Artificial Intelligence (AI) and Machine Learning (ML) based solutions are adopted to solve this problem. AI/ML methods with the capability to make sequential decisions like reinforcement learning seem most promising for these type of problems. But these algorithms come with their own challenges such as high variance, explainability, and online training. The continuously changing fog/edge environment dynamics require solutions that learn online, adopting changing computing environment. In this paper, we used standard review methodology to conduct this Systematic Literature Review (SLR) to analyze the role of AI/ML algorithms and the challenges in the applicability of these algorithms for resource management in fog/edge computing environments. Further, various machine learning, deep learning and reinforcement learning techniques for edge AI management have been discussed. Furthermore, we have presented the background and current status of AI/ML-based Fog/Edge Computing. Moreover, a taxonomy of AI/ML-based resource management techniques for fog/edge computing has been proposed and compared the existing techniques based on the proposed taxonomy. Finally, open challenges and promising future research directions have been identified and discussed in the area of AI/ML-based fog/edge computing.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
Over recent years, there has been a rapid development of deep learning (DL) in both industry and academia fields. However, finding the optimal hyperparameters of a DL model often needs high computational cost and human expertise. To mitigate the above issue, evolutionary computation (EC) as a powerful heuristic search approach has shown significant merits in the automated design of DL models, so-called evolutionary deep learning (EDL). This paper aims to analyze EDL from the perspective of automated machine learning (AutoML). Specifically, we firstly illuminate EDL from machine learning and EC and regard EDL as an optimization problem. According to the DL pipeline, we systematically introduce EDL methods ranging from feature engineering, model generation, to model deployment with a new taxonomy (i.e., what and how to evolve/optimize), and focus on the discussions of solution representation and search paradigm in handling the optimization problem by EC. Finally, key applications, open issues and potentially promising lines of future research are suggested. This survey has reviewed recent developments of EDL and offers insightful guidelines for the development of EDL.
Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.
Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.