Recently, tremendous strides have been made to align the generation of Large Language Models (LLMs) with human values to mitigate toxic or unhelpful content. Leveraging Reinforcement Learning from Human Feedback (RLHF) proves effective and is widely adopted by researchers. However, implementing RLHF is complex, and its sensitivity to hyperparameters renders achieving stable performance and scalability challenging. Furthermore, prevailing approaches to preference alignment primarily concentrate on pairwise comparisons, with limited exploration into multi-response scenarios, thereby overlooking the potential richness within the candidate pool. For the above reasons, we propose a new approach: Listwise Reward Enhancement for Preference Alignment (LIRE), a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework, thus eliminating the need for online sampling during training. LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm while naturally extending to multi-response scenarios. Moreover, we introduce a self-enhancement algorithm aimed at iteratively refining the reward during training. Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks, with good transferability to out-of-distribution data, assessed using proxy reward models and human annotators.
Vision Transformers (ViT) have emerged as the de-facto choice for numerous industry grade vision solutions. But their inference cost can be prohibitive for many settings, as they compute self-attention in each layer which suffers from quadratic computational complexity in the number of tokens. On the other hand, spatial information in images and spatio-temporal information in videos is usually sparse and redundant. In this work, we introduce LookupViT, that aims to exploit this information sparsity to reduce ViT inference cost. LookupViT provides a novel general purpose vision transformer block that operates by compressing information from higher resolution tokens to a fixed number of tokens. These few compressed tokens undergo meticulous processing, while the higher-resolution tokens are passed through computationally cheaper layers. Information sharing between these two token sets is enabled through a bidirectional cross-attention mechanism. The approach offers multiple advantages - (a) easy to implement on standard ML accelerators (GPUs/TPUs) via standard high-level operators, (b) applicable to standard ViT and its variants, thus generalizes to various tasks, (c) can handle different tokenization and attention approaches. LookupViT also offers flexibility for the compressed tokens, enabling performance-computation trade-offs in a single trained model. We show LookupViT's effectiveness on multiple domains - (a) for image-classification (ImageNet-1K and ImageNet-21K), (b) video classification (Kinetics400 and Something-Something V2), (c) image captioning (COCO-Captions) with a frozen encoder. LookupViT provides $2\times$ reduction in FLOPs while upholding or improving accuracy across these domains. In addition, LookupViT also demonstrates out-of-the-box robustness and generalization on image classification (ImageNet-C,R,A,O), improving by up to $4\%$ over ViT.
In this work we address the problem of finding serendipity versions of approximate de Rham complexes with enhanced regularity. The starting point is a new abstract construction of general scope which, given three complexes linked by extension and reduction maps, generates a fourth complex with cohomology isomorphic to the former three. This construction is used to devise new serendipity versions of rot-rot and Stokes complexes derived in the Discrete de Rham spirit.
We propose a low-cost laboratory platform for development and validation of underwater mapping techniques, using the BlueROV2 Remotely Operated Vehicle (ROV). Both the ROV and the objects to be mapped are placed in a pool that is imaged via an overhead camera. In our prototype mapping application, the ROV's pose is found using extended Kalman filtering on measurements from the overhead camera, inertial, and pressure sensors; while objects are detected with a deep neural network in the ROV camera stream. Validation experiments are performed for pose estimation, detection, and mapping. The litter detection dataset and code are made publicly available.
We give a recursive construction for projective Reed-Muller codes in terms of affine Reed-Muller codes and projective Reed-Muller codes in fewer variables. From this construction, we obtain the dimension of the subfield subcodes of projective Reed-Muller codes for some particular degrees that give codes with good parameters. Moreover, from this recursive construction we derive a lower bound for the generalized Hamming weights of projective Reed-Muller codes which is sharp in most of the cases we have checked.
We introduce a new observational setting for Positive Unlabeled (PU) data where the observations at prediction time are also labeled. This occurs commonly in practice -- we argue that the additional information is important for prediction, and call this task "augmented PU prediction". We allow for labeling to be feature dependent. In such scenario, Bayes classifier and its risk is established and compared with a risk of a classifier which for unlabeled data is based only on predictors. We introduce several variants of the empirical Bayes rule in such scenario and investigate their performance. We emphasise dangers (and ease) of applying classical classification rule in the augmented PU scenario -- due to no preexisting studies, an unaware researcher is prone to skewing the obtained predictions. We conclude that the variant based on recently proposed variational autoencoder designed for PU scenario works on par or better than other considered variants and yields advantage over feature-only based methods in terms of accuracy for unlabeled samples.
In contemporary problems involving genetic or neuroimaging data, thousands of hypotheses need to be tested. Due to their high power, and finite sample guarantees on type-1 error under weak assumptions, Monte-Carlo permutation tests are often considered as gold standard for these settings. However, the enormous computational effort required for (thousands of) permutation tests is a major burden. Recently, Fischer and Ramdas (2024) constructed a permutation test for a single hypothesis in which the permutations are drawn sequentially one-by-one and the testing process can be stopped at any point without inflating the type I error. They showed that the number of permutations can be substantially reduced (under null and alternative) while the power remains similar. We show how their approach can be modified to make it suitable for a broad class of multiple testing procedures. In particular, we discuss its use with the Benjamini-Hochberg procedure and illustrate the application on a large dataset.
In Bayesian quantile regression, the most commonly used likelihood is the asymmetric Laplace (AL) likelihood. The reason for this choice is not that it is a plausible data-generating model but that the corresponding maximum likelihood estimator is identical to the classical estimator by Koenker and Bassett (1978), and in that sense, the AL likelihood can be thought of as a working likelihood. AL-based quantile regression has been shown to produce good finite-sample Bayesian point estimates and to be consistent. However, if the AL distribution does not correspond to the data-generating distribution, credible intervals based on posterior standard deviations can have poor coverage. Yang, Wang, and He (2016) proposed an adjustment to the posterior covariance matrix that produces asymptotically valid intervals. However, we show that this adjustment is sensitive to the choice of scale parameter for the AL likelihood and can lead to poor coverage when the sample size is small to moderate. We therefore propose using Infinitesimal Jackknife (IJ) standard errors (Giordano & Broderick, 2023). These standard errors do not require resampling but can be obtained from a single MCMC run. We also propose a version of IJ standard errors for clustered data. Simulations and applications to real data show that the IJ standard errors have good frequentist properties, both for independent and clustered data. We provide an R-package that computes IJ standard errors for clustered or independent data after estimation with the brms wrapper in R for Stan.
This work aims to improve texture inpainting after clutter removal in scanned indoor meshes. This is achieved with a new UV mapping pre-processing step which leverages semantic information of indoor scenes to more accurately match the UV islands with the 3D representation of distinct structural elements like walls and floors. Semantic UV Mapping enriches classic UV unwrapping algorithms by not only relying on geometric features but also visual features originating from the present texture. The segmentation improves the UV mapping and simultaneously simplifies the 3D geometric reconstruction of the scene after the removal of loose objects. Each segmented element can be reconstructed separately using the boundary conditions of the adjacent elements. Because this is performed as a pre-processing step, other specialized methods for geometric and texture reconstruction can be used in the future to improve the results even further.
The present article aims to design and analyze efficient first-order strong schemes for a generalized A\"{i}t-Sahalia type model arising in mathematical finance and evolving in a positive domain $(0, \infty)$, which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term $\alpha_{-1} x^{-1}$ and a corrective mapping $\Phi_h$ in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size $h>0$) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.