This paper presents the concepts of Artificial Intelligence, Multi-Agent-Systems, Coordination, Intelligent Robotics and Deep Reinforcement Learning. Emphasis is given on and how AI and DRL, may be efficiently used to create efficient robot skills and coordinated robotic teams, capable of performing very complex actions and tasks, such as playing a game of soccer. The paper also presents the concept of robotic soccer and the vision and structure of the RoboCup initiative with emphasis on the Humanoid Simulation 3D league and the new challenges this competition, poses. The final topics presented at the paper are based on the research developed/coordinated by the author throughout the last 22 years in the context of the FCPortugal project. The paper presents a short description of the coordination methodologies developed, such as: Strategy, Tactics, Formations, Setplays, and Coaching Languages and the use of Machine Learning to optimize the use of this concepts. The topics presented also include novel stochastic search algorithms for black box optimization and their use in the optimization of omnidirectional walking skills, robotic multi-agent learning and the creation of a humanoid kick with controlled distance. Finally, new applications using variations of the Proximal Policy Optimization algorithm and advanced modelling for robot and multi-robot learning are briefly explained with emphasis for our new humanoid sprinting and running skills and an amazing humanoid robot soccer dribbling skill. FCPortugal project enabled us to publish more than 100 papers and win several competitions in different leagues and many scientific awards at RoboCup. In total, our team won more than 40 awards in international competitions including a clear victory at the Simulation 3D League at RoboCup 2022 competition, scoring 84 goals and conceding only 2.
This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval. CFIC addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained. Our evaluations of CFIC on a range of open QA datasets demonstrate its superiority in retrieving relevant and accurate evidence, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.
This paper presents a novel Stochastic Optimal Control (SOC) method based on Model Predictive Path Integral control (MPPI), named Stein Variational Guided MPPI (SVG-MPPI), designed to handle rapidly shifting multimodal optimal action distributions. While MPPI can find a Gaussian-approximated optimal action distribution in closed form, i.e., without iterative solution updates, it struggles with the multimodality of the optimal distributions. This is due to the less representative nature of the Gaussian. To overcome this limitation, our method aims to identify a target mode of the optimal distribution and guide the solution to converge to fit it. In the proposed method, the target mode is roughly estimated using a modified Stein Variational Gradient Descent (SVGD) method and embedded into the MPPI algorithm to find a closed-form ``mode-seeking'' solution that covers only the target mode, thus preserving the fast convergence property of MPPI. Our simulation and real-world experimental results demonstrate that SVG-MPPI outperforms both the original MPPI and other state-of-the-art sampling-based SOC algorithms in terms of path-tracking and obstacle-avoidance capabilities. Source code: //github.com/kohonda/proj-svg_mppi
This paper presents an optimization approach for cooperative Medium Access Control (MAC) techniques in Vehicular Ad Hoc Networks (VANETs) equipped with Roadside Unit (RSU) to enhance network throughput. Our method employs a distributed cooperative MAC scheme based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol, featuring selective RSU probing and adaptive transmission. It utilizes a dual timescale channel access framework, with a ``large-scale'' phase accounting for gradual changes in vehicle locations and a ``small-scale'' phase adapting to rapid channel fluctuations. We propose the RSU Probing and Cooperative Access (RPCA) strategy, a two-stage approach based on dynamic inter-vehicle distances from the RSU. Using optimal sequential planned decision theory, we rigorously prove its optimality in maximizing average system throughput per large-scale phase. For practical implementation in VANETs, we develop a distributed MAC algorithm with periodic location updates. It adjusts thresholds based on inter-vehicle and vehicle-RSU distances during the large-scale phase and accesses channels following the RPCA strategy with updated thresholds during the small-scale phase. Simulation results confirm the effectiveness and efficiency of our algorithm.
The paper presents an approach to the modelling of epistemic uncertainty in Conjunction Data Messages (CDM) and the classification of conjunction events according to the confidence in the probability of collision. The approach proposed in this paper is based on the Dempster-Shafer Theory (DSt) of evidence and starts from the assumption that the observed CDMs are drawn from a family of unknown distributions. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality is used to construct robust bounds on such a family of unknown distributions starting from a time series of CDMs. A DSt structure is then derived from the probability boxes constructed with DKW inequality. The DSt structure encapsulates the uncertainty in the CDMs at every point along the time series and allows the computation of the belief and plausibility in the realisation of a given probability of collision. The methodology proposed in this paper is tested on a number of real events and compared against existing practices in the European and French Space Agencies. We will show that the classification system proposed in this paper is more conservative than the approach taken by the European Space Agency but provides an added quantification of uncertainty in the probability of collision.
A Neural Radiance Field (NeRF) encodes the specific relation of 3D geometry and appearance of a scene. We here ask the question whether we can transfer the appearance from a source NeRF onto a target 3D geometry in a semantically meaningful way, such that the resulting new NeRF retains the target geometry but has an appearance that is an analogy to the source NeRF. To this end, we generalize classic image analogies from 2D images to NeRFs. We leverage correspondence transfer along semantic affinity that is driven by semantic features from large, pre-trained 2D image models to achieve multi-view consistent appearance transfer. Our method allows exploring the mix-and-match product space of 3D geometry and appearance. We show that our method outperforms traditional stylization-based methods and that a large majority of users prefer our method over several typical baselines.
This manuscript presents a comprehensive review of the use of Artificial Intelligence (AI) in Systematic Literature Reviews (SLRs). A SLR is a rigorous and organised methodology that assesses and integrates previous research on a given topic. Numerous tools have been developed to assist and partially automate the SLR process. The increasing role of AI in this field shows great potential in providing more effective support for researchers, moving towards the semi-automatic creation of literature reviews. Our study focuses on how AI techniques are applied in the semi-automation of SLRs, specifically in the screening and extraction phases. We examine 21 leading SLR tools using a framework that combines 23 traditional features with 11 AI features. We also analyse 11 recent tools that leverage large language models for searching the literature and assisting academic writing. Finally, the paper discusses current trends in the field, outlines key research challenges, and suggests directions for future research.
In the realm of Graph Neural Networks (GNNs), two exciting research directions have recently emerged: Subgraph GNNs and Graph Transformers. In this paper, we propose an architecture that integrates both approaches, dubbed Subgraphormer, which combines the enhanced expressive power, message-passing mechanisms, and aggregation schemes from Subgraph GNNs with attention and positional encodings, arguably the most important components in Graph Transformers. Our method is based on an intriguing new connection we reveal between Subgraph GNNs and product graphs, suggesting that Subgraph GNNs can be formulated as Message Passing Neural Networks (MPNNs) operating on a product of the graph with itself. We use this formulation to design our architecture: first, we devise an attention mechanism based on the connectivity of the product graph. Following this, we propose a novel and efficient positional encoding scheme for Subgraph GNNs, which we derive as a positional encoding for the product graph. Our experimental results demonstrate significant performance improvements over both Subgraph GNNs and Graph Transformers on a wide range of datasets.
With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at //github.com/Strivin0311/long-llms-learning.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
《Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource Machine Translation》K Murray, J Kinnison, T Q. Nguyen, W Scheirer, D Chiang [University of Notre Dame] (2019)