亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In single-objective optimization, it is well known that evolutionary algorithms also without further adjustments can tolerate a certain amount of noise in the evaluation of the objective function. In contrast, this question is not at all understood for multi-objective optimization. In this work, we conduct the first mathematical runtime analysis of a simple multi-objective evolutionary algorithm (MOEA) on a classic benchmark in the presence of noise in the objective functions. We prove that when bit-wise prior noise with rate $p \le \alpha/n$, $\alpha$ a suitable constant, is present, the \emph{simple evolutionary multi-objective optimizer} (SEMO) without any adjustments to cope with noise finds the Pareto front of the OneMinMax benchmark in time $O(n^2\log n)$, just as in the case without noise. Given that the problem here is to arrive at a population consisting of $n+1$ individuals witnessing the Pareto front, this is a surprisingly strong robustness to noise (comparably simple evolutionary algorithms cannot optimize the single-objective OneMax problem in polynomial time when $p = \omega(\log(n)/n)$). Our proofs suggest that the strong robustness of the MOEA stems from its implicit diversity mechanism designed to enable it to compute a population covering the whole Pareto front. Interestingly this result only holds when the objective value of a solution is determined only once and the algorithm from that point on works with this, possibly noisy, objective value. We prove that when all solutions are reevaluated in each iteration, then any noise rate $p = \omega(\log(n)/n^2)$ leads to a super-polynomial runtime. This is very different from single-objective optimization, where it is generally preferred to reevaluate solutions whenever their fitness is important and where examples are known such that not reevaluating solutions can lead to catastrophic performance losses.

相關內容

Range Avoidance (AVOID) is a total search problem where, given a Boolean circuit $C\colon\{0,1\}^n\to\{0,1\}^m$, $m>n$, the task is to find a $y\in\{0,1\}^m$ outside the range of $C$. For an integer $k\geq 2$, $\mathrm{NC}^0_k$-AVOID is a special case of AVOID where each output bit of $C$ depends on at most $k$ input bits. While there is a very natural randomized algorithm for AVOID, a deterministic algorithm for the problem would have many interesting consequences. Ren, Santhanam, and Wang (FOCS 2022) and Guruswami, Lyu, and Wang (RANDOM 2022) proved that explicit constructions of functions of high formula complexity, rigid matrices, and optimal linear codes, reduce to $\mathrm{NC}^0_4$-AVOID, thus establishing conditional hardness of the $\mathrm{NC}^0_4$-AVOID problem. On the other hand, $\mathrm{NC}^0_2$-AVOID admits polynomial-time algorithms, leaving the question about the complexity of $\mathrm{NC}^0_3$-AVOID open. We give the first reduction of an explicit construction question to $\mathrm{NC}^0_3$-AVOID. Specifically, we prove that a polynomial-time algorithm (with an $\mathrm{NP}$ oracle) for $\mathrm{NC}^0_3$-AVOID for the case of $m=n+n^{2/3}$ would imply an explicit construction of a rigid matrix, and, thus, a super-linear lower bound on the size of log-depth circuits. We also give deterministic polynomial-time algorithms for all $\mathrm{NC}^0_k$-AVOID problems for $m\geq n^{k-1}/\log(n)$. Prior work required an $\mathrm{NP}$ oracle, and required larger stretch, $m \geq n^{k-1}$.

We study streaming algorithms in the white-box adversarial stream model, where the internal state of the streaming algorithm is revealed to an adversary who adaptively generates the stream updates, but the algorithm obtains fresh randomness unknown to the adversary at each time step. We incorporate cryptographic assumptions to construct robust algorithms against such adversaries. We propose efficient algorithms for sparse recovery of vectors, low rank recovery of matrices and tensors, as well as low rank plus sparse recovery of matrices, i.e., robust PCA. Unlike deterministic algorithms, our algorithms can report when the input is not sparse or low rank even in the presence of such an adversary. We use these recovery algorithms to improve upon and solve new problems in numerical linear algebra and combinatorial optimization on white-box adversarial streams. For example, we give the first efficient algorithm for outputting a matching in a graph with insertions and deletions to its edges provided the matching size is small, and otherwise we declare the matching size is large. We also improve the approximation versus memory tradeoff of previous work for estimating the number of non-zero elements in a vector and computing the matrix rank.

We present RETA (Relative Timing Analysis), a differential timing analysis technique to verify the impact of an update on the execution time of embedded software. Timing analysis is computationally expensive and labor intensive. Software updates render repeating the analysis from scratch a waste of resources and time, because their impact is inherently confined. To determine this boundary, in RETA we apply a slicing procedure that identifies all relevant code segments and a statement categorization that determines how to analyze each such line of code. We adapt a subset of RETA for integration into aiT, an industrial timing analysis tool, and also develop a complete implementation in a tool called DELTA. Based on staple benchmarks and realistic code updates from official repositories, we test the accuracy by analyzing the worst-case execution time (WCET) before and after an update, comparing the measures with the use of the unmodified aiT as well as real executions on embedded hardware. DELTA returns WCET information that ranges from exactly the WCET of real hardware to 148% of the new version's measured WCET. With the same benchmarks, the unmodified aiT estimates are 112% and 149% of the actual executions; therefore, even when DELTA is pessimistic, an industry-strength tool such as aiT cannot do better. Crucially, we also show that RETA decreases aiT's analysis time by 45% and its memory consumption by 8.9%, whereas removing RETA from DELTA, effectively rendering it a regular timing analysis tool, increases its analysis time by 27%.

The randomized singular value decomposition (R-SVD) is a popular sketching-based algorithm for efficiently computing the partial SVD of a large matrix. When the matrix is low-rank, the R-SVD produces its partial SVD exactly; but when the rank is large, it only yields an approximation. Motivated by applications in data science and principal component analysis (PCA), we analyze the R-SVD under a low-rank signal plus noise measurement model; specifically, when its input is a spiked random matrix. The singular values produced by the R-SVD are shown to exhibit a BBP-like phase transition: when the SNR exceeds a certain detectability threshold, that depends on the dimension reduction factor, the largest singular value is an outlier; below the threshold, no outlier emerges from the bulk of singular values. We further compute asymptotic formulas for the overlap between the ground truth signal singular vectors and the approximations produced by the R-SVD. Dimensionality reduction has the adverse affect of amplifying the noise in a highly nonlinear manner. Our results demonstrate the statistical advantage -- in both signal detection and estimation -- of the R-SVD over more naive sketched PCA variants; the advantage is especially dramatic when the sketching dimension is small. Our analysis is asymptotically exact, and substantially more fine-grained than existing operator-norm error bounds for the R-SVD, which largely fail to give meaningful error estimates in the moderate SNR regime. It applies for a broad family of sketching matrices previously considered in the literature, including Gaussian i.i.d. sketches, random projections, and the sub-sampled Hadamard transform, among others. Lastly, we derive an optimal singular value shrinker for singular values and vectors obtained through the R-SVD, which may be useful for applications in matrix denoising.

Comparing the survival times among two groups is a common problem in time-to-event analysis, for example if one would like to understand whether one medical treatment is superior to another. In the standard survival analysis setting, there has been a lot of discussion on how to quantify such difference and what can be an intuitive, easily interpretable, summary measure. In the presence of subjects that are immune to the event of interest (`cured'), we illustrate that it is not appropriate to just compare the overall survival functions. Instead, it is more informative to compare the cure fractions and the survival of the uncured sub-populations separately from each other. Our research is mainly driven by the question: if the cure fraction is similar for two available treatments, how else can we determine which is preferable? To this end, we estimate the mean survival times in the uncured fractions of both treatment groups ($MST_u$) and develop permutation tests for inference. In the first out of two connected papers, we focus on nonparametric approaches. The methods are illustrated with medical data of leukemia patients. In Part II we adjust the mean survival time of the uncured for potential confounders, which is crucial in observational settings. For each group, we employ the widely used logistic-Cox mixture cure model and estimate the $MST_u$ conditionally on a given covariate value. An asymptotic and a permutation-based approach have been developed for making inference on the difference of conditional $MST_u$'s between two groups. Contrarily to available results in the literature, in the simulation study we do not observe a clear advantage of the permutation method over the asymptotic one to justify its increased computational cost. The methods are illustrated through a practical application to breast cancer data.

This paper considers a wide class of smooth continuous dynamic nonlinear systems (control objects) with a measurable vector of state. The problem is to find a special function (Lyapunov function), which in the framework of the second Lyapunov method guarantees asymptotic stability for the above described class of nonlinear systems. It is well known that the search for a Lyapunov function is the "cornerstone" of mathematical stability theory. Methods for selecting or finding the Lyapunov function to analyze the stability of closed linear stationary systems, as well as for nonlinear objects with explicit linear dynamic and nonlinear static parts, have been well studied (see works by Lurie, Yakubovich, Popov, and many others). However, universal approaches to the search for the Lyapunov function for a more general class of nonlinear systems have not yet been identified. There is a large variety of methods for finding the Lyapunov function for nonlinear systems, but they all operate within the constraints imposed on the structure of the control object. In this paper we propose another approach, which allows to give specialists in the field of automatic control theory a new tool/mechanism of Lyapunov function search for stability analysis of smooth continuous dynamic nonlinear systems with measurable state vector. The essence of proposed approach consists in representation of some function through sum of nonlinear terms, which are elements of object's state vector, multiplied by unknown coefficients, raised to positive degrees. Then the unknown coefficients are selected using genetic algorithm, which should provide the function with all necessary conditions for Lyapunov function (in the framework of the second Lyapunov method).

Real-world problems are often comprised of many objectives and require solutions that carefully trade-off between them. Current approaches to many-objective optimization often require challenging assumptions, like knowledge of the importance/difficulty of objectives in a weighted-sum single-objective paradigm, or enormous populations to overcome the curse of dimensionality in multi-objective Pareto optimization. Combining elements from Many-Objective Evolutionary Algorithms and Quality Diversity algorithms like MAP-Elites, we propose Many-objective Optimization via Voting for Elites (MOVE). MOVE maintains a map of elites that perform well on different subsets of the objective functions. On a 14-objective image-neuroevolution problem, we demonstrate that MOVE is viable with a population of as few as 50 elites and outperforms a naive single-objective baseline. We find that the algorithm's performance relies on solutions jumping across bins (for a parent to produce a child that is elite for a different subset of objectives). We suggest that this type of goal-switching is an implicit method to automatic identification of stepping stones or curriculum learning. We comment on the similarities and differences between MOVE and MAP-Elites, hoping to provide insight to aid in the understanding of that approach $\unicode{x2013}$ and suggest future work that may inform this approach's use for many-objective problems in general.

The Independent Cutset problem asks whether there is a set of vertices in a given graph that is both independent and a cutset. Such a problem is $\textsf{NP}$-complete even when the input graph is planar and has maximum degree five. In this paper, we first present a $\mathcal{O}^*(1.4423^{n})$-time algorithm for the problem. We also show how to compute a minimum independent cutset (if any) in the same running time. Since the property of having an independent cutset is MSO$_1$-expressible, our main results are concerned with structural parameterizations for the problem considering parameters that are not bounded by a function of the clique-width of the input. We present $\textsf{FPT}$-time algorithms for the problem considering the following parameters: the dual of the maximum degree, the dual of the solution size, the size of a dominating set (where a dominating set is given as an additional input), the size of an odd cycle transversal, the distance to chordal graphs, and the distance to $P_5$-free graphs. We close by introducing the notion of $\alpha$-domination, which allows us to identify more fixed-parameter tractable and polynomial-time solvable cases.

Maximum weight independent set (MWIS) admits a $\frac1k$-approximation in inductively $k$-independent graphs and a $\frac{1}{2k}$-approximation in $k$-perfectly orientable graphs. These are a a parameterized class of graphs that generalize $k$-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others. We consider a generalization of MWIS to a submodular objective. Given a graph $G=(V,E)$ and a non-negative submodular function $f: 2^V \rightarrow \mathbb{R}_+$, the goal is to approximately solve $\max_{S \in \mathcal{I}_G} f(S)$ where $\mathcal{I}_G$ is the set of independent sets of $G$. We obtain an $\Omega(\frac1k)$-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least $\frac{1}{e(k+1)}$. This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively $k$-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks.

Quality diversity~(QD) is a branch of evolutionary computation that gained increasing interest in recent years. The Map-Elites QD approach defines a feature space, i.e., a partition of the search space, and stores the best solution for each cell of this space. We study a simple QD algorithm in the context of pseudo-Boolean optimisation on the ``number of ones'' feature space, where the $i$th cell stores the best solution amongst those with a number of ones in $[(i-1)k, ik-1]$. Here $k$ is a granularity parameter $1 \leq k \leq n+1$. We give a tight bound on the expected time until all cells are covered for arbitrary fitness functions and for all $k$ and analyse the expected optimisation time of QD on \textsc{OneMax} and other problems whose structure aligns favourably with the feature space. On combinatorial problems we show that QD finds a ${(1-1/e)}$-approximation when maximising any monotone sub-modular function with a single uniform cardinality constraint efficiently. Defining the feature space as the number of connected components of a connected graph, we show that QD finds a minimum spanning tree in expected polynomial time.

北京阿比特科技有限公司