亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Granular metamaterials are a promising choice for the realization of mechanical computing devices. As preliminary evidence of this, we demonstrate here how to embed Boolean logic gates (AND and XOR) into a granular metamaterial by evolving where particular grains are placed in the material. Our results confirm the existence of gradients of increasing "AND-ness" and "XOR-ness" within the space of possible materials that can be followed by evolutionary search. We measure the computational functionality of a material by probing how it transforms bits encoded as vibrations with zero or non-zero amplitude. We compared the evolution of materials built from mass-contrasting particles and materials built from stiffness-contrasting particles, and found that the latter were more evolvable. We believe this work may pave the way toward evolutionary design of increasingly sophisticated, programmable, and computationally dense metamaterials with certain advantages over more traditional computational substrates.

相關內容

This paper studies inference in randomized controlled trials with multiple treatments, where treatment status is determined according to a "matched tuples" design. Here, by a matched tuples design, we mean an experimental design where units are sampled i.i.d. from the population of interest, grouped into "homogeneous" blocks with cardinality equal to the number of treatments, and finally, within each block, each treatment is assigned exactly once uniformly at random. We first study estimation and inference for matched tuples designs in the general setting where the parameter of interest is a vector of linear contrasts over the collection of average potential outcomes for each treatment. Parameters of this form include but are not limited to standard average treatment effects used to compare one treatment relative to another. We first establish conditions under which a sample analogue estimator is asymptotically normal and construct a consistent estimator of its corresponding asymptotic variance. Combining these results establishes the asymptotic validity of tests based on these estimators. In contrast, we show that a common testing procedure based on a linear regression with block fixed effects and the usual heteroskedasticity-robust variance estimator is invalid in the sense that the resulting test may have a limiting rejection probability under the null hypothesis strictly greater than the nominal level. We then apply our results to study the asymptotic properties of what we call "fully-blocked" $2^K$ factorial designs, which are simply matched tuples designs applied to a full factorial experiment. Leveraging our previous results, we establish that our estimator achieves a lower asymptotic variance under the fully-blocked design than that under any stratified factorial design. A simulation study and empirical application illustrate the practical relevance of our results.

Information of interest can often only be extracted from data by model fitting. When the functional form of such a model can not be deduced from first principles, one has to make a choice between different possible models. A common approach in such cases is to minimise the information loss in the model by trying to reduce the number of fit variables (or the model flexibility, respectively) as much as possible while still yielding an acceptable fit to the data. Model selection via the Akaike Information Criterion (AIC) provides such an implementation of Occam's razor. We argue that the same principles can be applied to optimise the penalty-strength of a penalised maximum-likelihood model. However, while in typical applications AIC is used to choose from a finite, discrete set of maximum-likelihood models the penalty optimisation requires to select out of a continuum of candidate models and these models violate the maximum-likelihood condition. We derive a generalised information criterion AICp that encompasses this case. It naturally involves the concept of effective free parameters which is very flexible and can be applied to any model, be it linear or non-linear, parametric or non-parametric, and with or without constraint equations on the parameters. We show that the generalised AICp allows an optimisation of any penalty-strength without the need of separate Monte-Carlo simulations. As an example application, we discuss the optimisation of the smoothing in non-parametric models which has many applications in astrophysics, like in dynamical modeling, spectral fitting or gravitational lensing.

We present an historical overview about the connections between the analysis of risk and the control of autonomous systems. We offer two main contributions. Our first contribution is to propose three overlapping paradigms to classify the vast body of literature: the worst-case, risk-neutral, and risk-averse paradigms. We consider an appropriate assessment for the risk of an autonomous system to depend on the application at hand. In contrast, it is typical to assess risk using an expectation, variance, or probability alone. Our second contribution is to unify the concepts of risk and autonomous systems. We achieve this by connecting approaches for quantifying and optimizing the risk that arises from a system's behaviour across academic fields. The survey is highly multidisciplinary. We include research from the communities of reinforcement learning, stochastic and robust control theory, operations research, and formal verification. We describe both model-based and model-free methods, with emphasis on the former. Lastly, we highlight fruitful areas for further research. A key direction is to blend risk-averse model-based and model-free methods to enhance the real-time adaptive capabilities of systems to improve human and environmental welfare.

Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In this work, we propose Code-based Deep Knowledge Tracing (Code-DKT), a model that uses an attention mechanism to automatically extract and select domain-specific code features to extend DKT. We compared the effectiveness of Code-DKT against Bayesian and Deep Knowledge Tracing (BKT and DKT) on a dataset from a class of 50 students attempting to solve 5 introductory programming assignments. Our results show that Code-DKT consistently outperforms DKT by 3.07-4.00% AUC across the 5 assignments, a comparable improvement to other state-of-the-art domain-general KT models over DKT. Finally, we analyze problem-specific performance through a set of case studies for one assignment to demonstrate when and how code features improve Code-DKT's predictions.

Efficient optimization of topology and raster angle has shown unprecedented enhancements in the mechanical properties of 3D printed materials. Topology optimization helps reduce the waste of raw material in the fabrication of 3D printed parts, thus decreasing production costs associated with manufacturing lighter structures. Fiber orientation plays an important role in increasing the stiffness of a structure. This paper develops and tests a new method for handling stress constraints in topology and fiber orientation optimization of 3D printed orthotropic structures. The stress constraints are coupled with an objective function that maximizes stiffness. This is accomplished by using the modified solid isotropic material with penalization method with the method of moving asymptotes as the mathematical optimizer. Each element has a fictitious density and an angle as the main design variables. To reduce the number of stress constraints and thus the computational cost, a new clustering strategy is employed in which the highest stresses in the principal material coordinates are grouped separately into two clusters using an adjusted $P$-norm. A detailed description of the formulation and sensitivity analysis is discussed. While we present an analysis of 2D structures in the numerical examples section, the method can also be used for 3D structures, as the formulation is generic. Our results show that this method can produce efficient structures suitable for 3D printing while thresholding the stresses.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.

北京阿比特科技有限公司