In recent years, research involving human participants has been critical to advances in artificial intelligence (AI) and machine learning (ML), particularly in the areas of conversational, human-compatible, and cooperative AI. For example, around 12% and 6% of publications at recent AAAI and NeurIPS conferences indicate the collection of original human data, respectively. Yet AI and ML researchers lack guidelines for ethical, transparent research practices with human participants. Fewer than one out of every four of these AAAI and NeurIPS papers provide details of ethical review, the collection of informed consent, or participant compensation. This paper aims to bridge this gap by exploring normative similarities and differences between AI research and related fields that involve human participants. Though psychology, human-computer interaction, and other adjacent fields offer historic lessons and helpful insights, AI research raises several specific concerns$\unicode{x2014}$namely, participatory design, crowdsourced dataset development, and an expansive role of corporations$\unicode{x2014}$that necessitate a contextual ethics framework. To address these concerns, this paper outlines a set of guidelines for ethical and transparent practice with human participants in AI and ML research. These guidelines can be found in Section 4 on pp. 4$\unicode{x2013}$7.
As advancements in artificial intelligence (AI) propel progress in the life sciences, they may also enable the weaponisation and misuse of biological agents. This article differentiates two classes of AI tools that could pose such biosecurity risks: large language models (LLMs) and biological design tools (BDTs). LLMs, such as GPT-4 and its successors, might provide dual-use information and thus remove some barriers encountered by historical biological weapons efforts. As LLMs are turned into multi-modal lab assistants and autonomous science tools, this will increase their ability to support non-experts in performing laboratory work. Thus, LLMs may in particular lower barriers to biological misuse. In contrast, BDTs will expand the capabilities of sophisticated actors. Concretely, BDTs may enable the creation of pandemic pathogens substantially worse than anything seen to date and could enable forms of more predictable and targeted biological weapons. In combination, the convergence of LLMs and BDTs could raise the ceiling of harm from biological agents and could make them broadly accessible. A range of interventions would help to manage risks. Independent pre-release evaluations could help understand the capabilities of models and the effectiveness of safeguards. Options for differentiated access to such tools should be carefully weighed with the benefits of openly releasing systems. Lastly, essential for mitigating risks will be universal and enhanced screening of gene synthesis products.
Stabbing Planes (also known as Branch and Cut) is a proof system introduced very recently which, informally speaking, extends the DPLL method by branching on integer linear inequalities instead of single variables. The techniques known so far to prove size and depth lower bounds for Stabbing Planes are generalizations of those used for the Cutting Planes proof system. For size lower bounds these are established by monotone circuit arguments, while for depth these are found via communication complexity and protection. As such these bounds apply for lifted versions of combinatorial statements. Rank lower bounds for Cutting Planes are also obtained by geometric arguments called protection lemmas. In this work we introduce two new geometric approaches to prove size/depth lower bounds in Stabbing Planes working for any formula: (1) the antichain method, relying on Sperner's Theorem and (2) the covering method which uses results on essential coverings of the boolean cube by linear polynomials, which in turn relies on Alon's combinatorial Nullenstellensatz. We demonstrate their use on classes of combinatorial principles such as the Pigeonhole principle, the Tseitin contradictions and the Linear Ordering Principle. By the first method we prove almost linear size lower bounds and optimal logarithmic depth lower bounds for the Pigeonhole principle and analogous lower bounds for the Tseitin contradictions over the complete graph and for the Linear Ordering Principle. By the covering method we obtain a superlinear size lower bound and a logarithmic depth lower bound for Stabbing Planes proof of Tseitin contradictions over a grid graph.
Rational best approximations (in a Chebyshev sense) to real functions are characterized by an equioscillating approximation error. Similar results do not hold true for rational best approximations to complex functions in general. In the present work, we consider unitary rational approximations to the exponential function on the imaginary axis, which map the imaginary axis to the unit circle. In the class of unitary rational functions, best approximations are shown to exist, to be uniquely characterized by equioscillation of a phase error, and to possess a super-linear convergence rate. Furthermore, the best approximations have full degree (i.e., non-degenerate), achieve their maximum approximation error at points of equioscillation, and interpolate at intermediate points. Asymptotic properties of poles, interpolation nodes, and equioscillation points of these approximants are studied. Three algorithms, which are found very effective to compute unitary rational approximations including candidates for best approximations, are sketched briefly. Some consequences to numerical time-integration are discussed. In particular, time propagators based on unitary best approximants are unitary, symmetric and A-stable.
Deep learning techniques have dominated the literature on aspect-based sentiment analysis (ABSA), achieving state-of-the-art performance. However, deep models generally suffer from spurious correlations between input features and output labels, which hurts the robustness and generalization capability by a large margin. In this paper, we propose to reduce spurious correlations for ABSA, via a novel Contrastive Variational Information Bottleneck framework (called CVIB). The proposed CVIB framework is composed of an original network and a self-pruned network, and these two networks are optimized simultaneously via contrastive learning. Concretely, we employ the Variational Information Bottleneck (VIB) principle to learn an informative and compressed network (self-pruned network) from the original network, which discards the superfluous patterns or spurious correlations between input features and prediction labels. Then, self-pruning contrastive learning is devised to pull together semantically similar positive pairs and push away dissimilar pairs, where the representations of the anchor learned by the original and self-pruned networks respectively are regarded as a positive pair while the representations of two different sentences within a mini-batch are treated as a negative pair. To verify the effectiveness of our CVIB method, we conduct extensive experiments on five benchmark ABSA datasets and the experimental results show that our approach achieves better performance than the strong competitors in terms of overall prediction performance, robustness, and generalization. Code and data to reproduce the results in this paper is available at: //github.com/shesshan/CVIB.
Traffic accidents, being a significant contributor to both human casualties and property damage, have long been a focal point of research for many scholars in the field of traffic safety. However, previous studies, whether focusing on static environmental assessments or dynamic driving analyses, as well as pre-accident predictions or post-accident rule analyses, have typically been conducted in isolation. There has been a lack of an effective framework for developing a comprehensive understanding and application of traffic safety. To address this gap, this paper introduces AccidentGPT, a comprehensive accident analysis and prevention multi-modal large model. AccidentGPT establishes a multi-modal information interaction framework grounded in multi-sensor perception, thereby enabling a holistic approach to accident analysis and prevention in the field of traffic safety. Specifically, our capabilities can be categorized as follows: for autonomous driving vehicles, we provide comprehensive environmental perception and understanding to control the vehicle and avoid collisions. For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts while also providing safety driving recommendations and behavioral norms through human-machine dialogue and interaction. Additionally, for traffic police and management agencies, our framework supports intelligent and real-time analysis of traffic safety, encompassing pedestrian, vehicles, roads, and the environment through collaborative perception from multiple vehicles and road testing devices. The system is also capable of providing a thorough analysis of accident causes and liability after vehicle collisions. Our framework stands as the first large model to integrate comprehensive scene understanding into traffic safety studies.
There exists a growing discourse around the domination of Big Tech on the landscape of artificial intelligence (AI) research, yet our comprehension of this phenomenon remains cursory. This paper aims to broaden and deepen our understanding of Big Tech's reach and power within AI research. It highlights the dominance not merely in terms of sheer publication volume but rather in the propagation of new ideas or \textit{memes}. Current studies often oversimplify the concept of influence to the share of affiliations in academic papers, typically sourced from limited databases such as arXiv or specific academic conferences. The main goal of this paper is to unravel the specific nuances of such influence, determining which AI ideas are predominantly driven by Big Tech entities. By employing network and memetic analysis on AI-oriented paper abstracts and their citation network, we are able to grasp a deeper insight into this phenomenon. By utilizing two databases: OpenAlex and S2ORC, we are able to perform such analysis on a much bigger scale than previous attempts. Our findings suggest, that while Big Tech-affiliated papers are disproportionately more cited in some areas, the most cited papers are those affiliated with both Big Tech and Academia. Focusing on the most contagious memes, their attribution to specific affiliation groups (Big Tech, Academia, mixed affiliation) seems to be equally distributed between those three groups. This suggests that the notion of Big Tech domination over AI research is oversimplified in the discourse. Ultimately, this more nuanced understanding of Big Tech's and Academia's influence could inform a more symbiotic alliance between these stakeholders which would better serve the dual goals of societal welfare and the scientific integrity of AI research.
The arrival of AI techniques in computations, with the potential for hallucinations and non-robustness, has made trustworthiness of algorithms a focal point. However, trustworthiness of the many classical approaches are not well understood. This is the case for feature selection, a classical problem in the sciences, statistics, machine learning etc. Here, the LASSO optimisation problem is standard. Despite its widespread use, it has not been established when the output of algorithms attempting to compute support sets of minimisers of LASSO in order to do feature selection can be trusted. In this paper we establish how no (randomised) algorithm that works on all inputs can determine the correct support sets (with probability $> 1/2$) of minimisers of LASSO when reading approximate input, regardless of precision and computing power. However, we define a LASSO condition number and design an efficient algorithm for computing these support sets provided the input data is well-posed (has finite condition number) in time polynomial in the dimensions and logarithm of the condition number. For ill-posed inputs the algorithm runs forever, hence, it will never produce a wrong answer. Furthermore, the algorithm computes an upper bound for the condition number when this is finite. Finally, for any algorithm defined on an open set containing a point with infinite condition number, there is an input for which the algorithm will either run forever or produce a wrong answer. Our impossibility results stem from generalised hardness of approximation -- within the Solvability Complexity Index (SCI) hierarchy framework -- that generalises the classical phenomenon of hardness of approximation.
The rapid development of Machine Learning (ML) has demonstrated superior performance in many areas, such as computer vision, video and speech recognition. It has now been increasingly leveraged in software systems to automate the core tasks. However, how to securely develop the machine learning-based modern software systems (MLBSS) remains a big challenge, for which the insufficient consideration will largely limit its application in safety-critical domains. One concern is that the present MLBSS development tends to be rush, and the latent vulnerabilities and privacy issues exposed to external users and attackers will be largely neglected and hard to be identified. Additionally, machine learning-based software systems exhibit different liabilities towards novel vulnerabilities at different development stages from requirement analysis to system maintenance, due to its inherent limitations from the model and data and the external adversary capabilities. The successful generation of such intelligent systems will thus solicit dedicated efforts jointly from different research areas, i.e., software engineering, system security and machine learning. Most of the recent works regarding the security issues for ML have a strong focus on the data and models, which has brought adversarial attacks into consideration. In this work, we consider that security for machine learning-based software systems may arise from inherent system defects or external adversarial attacks, and the secure development practices should be taken throughout the whole lifecycle. While machine learning has become a new threat domain for existing software engineering practices, there is no such review work covering the topic. Overall, we present a holistic review regarding the security for MLBSS, which covers a systematic understanding from a structure review of three distinct aspects in terms of security threats...
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.