亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Click-Through Rate (CTR) prediction has become an essential task in digital industries, such as digital advertising or online shopping. Many deep learning-based methods have been implemented and have become state-of-the-art models in the domain. To further improve the performance of CTR models, Knowledge Distillation based approaches have been widely used. However, most of the current CTR prediction models do not have much complex architectures, so it's hard to call one of them 'cumbersome' and the other one 'tiny'. On the other hand, the performance gap is also not very large between complex and simple models. So, distilling knowledge from one model to the other could not be worth the effort. Under these considerations, Mutual Learning could be a better approach, since all the models could be improved mutually. In this paper, we showed how useful the mutual learning algorithm could be when it is between equals. In our experiments on the Criteo and Avazu datasets, the mutual learning algorithm improved the performance of the model by up to 0.66% relative improvement.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 語言模型化 · 國際學習理論會議 · Learning ·
2024 年 7 月 28 日

Recently, integrating external tools with Large Language Models (LLMs) has gained significant attention as an effective strategy to mitigate the limitations inherent in their pre-training data. However, real-world systems often incorporate a wide array of tools, making it impractical to input all tools into LLMs due to length limitations and latency constraints. Therefore, to fully exploit the potential of tool-augmented LLMs, it is crucial to develop an effective tool retrieval system. Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions, frequently leading to the retrieval of redundant, similar tools. Consequently, these methods fail to provide a complete set of diverse tools necessary for addressing the multifaceted problems encountered by LLMs. In this paper, we propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools. Specifically, we first fine-tune the PLM-based retrieval models to capture the semantic relationships between queries and tools in the semantic learning stage. Subsequently, we construct three bipartite graphs among queries, scenes, and tools and introduce a dual-view graph collaborative learning framework to capture the intricate collaborative relationships among tools during the collaborative learning stage. Extensive experiments on both the open benchmark and the newly introduced ToolLens dataset show that COLT achieves superior performance. Notably, the performance of BERT-mini (11M) with our proposed model framework outperforms BERT-large (340M), which has 30 times more parameters. Furthermore, we will release ToolLens publicly to facilitate future research on tool retrieval.

We propose a novel framework for video understanding, called Temporally Contextualized CLIP (TC-CLIP), which leverages essential temporal information through global interactions in a spatio-temporal domain within a video. To be specific, we introduce Temporal Contextualization (TC), a layer-wise temporal information infusion mechanism for videos, which 1) extracts core information from each frame, 2) connects relevant information across frames for the summarization into context tokens, and 3) leverages the context tokens for feature encoding. Furthermore, the Video-conditional Prompting (VP) module processes context tokens to generate informative prompts in the text modality. Extensive experiments in zero-shot, few-shot, base-to-novel, and fully-supervised action recognition validate the effectiveness of our model. Ablation studies for TC and VP support our design choices. Our project page with the source code is available at //github.com/naver-ai/tc-clip

Short-form video (SFV) has become a globally popular form of entertainment in recent years, appearing on major social media platforms. However, current research indicate that short video addiction can lead to numerous negative effects on both physical and psychological health, such as decreased attention span and reduced motivation to learn. Additionally, Short-form Video Addiction (SFVA) has been linked to other issues such as a lack of psychological support in real life, family or academic pressure, and social anxiety. Currently, the detection of SFVA typically occurs only after users experience negative consequences. Therefore, we aim to construct a short video addiction dataset based on social network behavior and design an early detection framework for SFVA. Previous mental health detection research on online social media has mostly focused on detecting depression and suicidal tendency. In this study, we propose the first early detection framework for SFVA EarlySD. We first introduce large language models (LLMs) to address the common issues of sparsity and missing data in graph datasets. Meanwhile, we categorize social network behavior data into different modalities and design a heterogeneous social network structure as the primary basis for detecting SFVA. We conduct a series of quantitative analysis on short video addicts using our self-constructed dataset, and perform extensive experiments to validate the effectiveness of our method EarlySD, using social data and heterogeneous social graphs in the detection of short video addiction.

Masked Image Modeling (MIM) has emerged as a promising method for deriving visual representations from unlabeled image data by predicting missing pixels from masked portions of images. It excels in region-aware learning and provides strong initializations for various tasks, but struggles to capture high-level semantics without further supervised fine-tuning, likely due to the low-level nature of its pixel reconstruction objective. A promising yet unrealized framework is learning representations through masked reconstruction in latent space, combining the locality of MIM with the high-level targets. However, this approach poses significant training challenges as the reconstruction targets are learned in conjunction with the model, potentially leading to trivial or suboptimal solutions.Our study is among the first to thoroughly analyze and address the challenges of such framework, which we refer to as Latent MIM. Through a series of carefully designed experiments and extensive analysis, we identify the source of these challenges, including representation collapsing for joint online/target optimization, learning objectives, the high region correlation in latent space and decoding conditioning. By sequentially addressing these issues, we demonstrate that Latent MIM can indeed learn high-level representations while retaining the benefits of MIM models.

A mechanism is described that addresses the fundamental trade off between media producers who want to increase reach and consumers who provide attention based on the rate of utility received, and where overreach negatively impacts that rate. An optimal solution can be achieved when the media source considers the impact of overreach in a cost function used in determining the optimal distribution of content to maximize individual consumer utility and participation. The result is a Nash equilibrium between producer and consumer that is also Pareto efficient. Comparison with the literature on Recommender systems highlights the advantages of the mechanism, including identifying an optimal content volume for the consumer and improvements for optimizing with multiple objectives. A practical algorithm for generating the optimal distribution for each consumer is provided.

Integrating coded caching (CC) into multiple-input multiple-output (MIMO) communications may significantly enhance the achievable degrees of freedom (DoF) of the wireless networks. In this paper, we consider a cache-aided MIMO configuration with a CC gain $t$, where a server with $L$ Tx antennas communicates with $K$ users, each with $G$ Rx antennas. In the proposed content-aware MIMO strategy, we carefully adjust the number of users $\Omega$ and the number of parallel streams decoded by each user $\beta$ served in each transmission to maximize the DoF. As a result, we achieve a DoF of ${\max_{\beta, \Omega }}{\Omega \beta}$, where ${\beta \le \mathrm{min}\big(G,\frac{L \binom{\Omega-1}{t}}{1 + (\Omega - t-1)\binom{\Omega-1}{t}}\big)}$. To prove the achievability of the proposed DoF bound, we provide a novel transmission strategy based on the simultaneous unicasting of multiple data streams. In this strategy, the missing data packets are scheduled such that the number of parallel streams per transmission is maximized while the decodability of all useful terms by each target user is guaranteed. Numerical simulations validate the findings, confirming the enhanced DoF and improved performance of the proposed design.

With the wide application of machine translation, the testing of Machine Translation Systems (MTSs) has attracted much attention. Recent works apply Metamorphic Testing (MT) to address the oracle problem in MTS testing. Existing MT methods for MTS generally follow the workflow of input transformation and output relation comparison, which generates a follow-up input sentence by mutating the source input and compares the source and follow-up output translations to detect translation errors, respectively. These methods use various input transformations to generate test case pairs and have successfully triggered numerous translation errors. However, they have limitations in performing fine-grained and rigorous output relation comparison and thus may report many false alarms and miss many true errors. In this paper, we propose a word closure-based output comparison method to address the limitations of the existing MTS MT methods. We first propose word closure as a new comparison unit, where each closure includes a group of correlated input and output words in the test case pair. Word closures suggest the linkages between the appropriate fragment in the source output translation and its counterpart in the follow-up output for comparison. Next, we compare the semantics on the level of word closure to identify the translation errors. In this way, we perform a fine-grained and rigorous semantic comparison for the outputs and thus realize more effective violation identification. We evaluate our method with the test cases generated by five existing input transformations and the translation outputs from three popular MTSs. Results show that our method significantly outperforms the existing works in violation identification by improving the precision and recall and achieving an average increase of 29.9% in F1 score. It also helps to increase the F1 score of translation error localization by 35.9%.

As 3D Gaussian Splatting (3DGS) provides fast and high-quality novel view synthesis, it is a natural extension to deform a canonical 3DGS to multiple frames for representing a dynamic scene. However, previous works fail to accurately reconstruct complex dynamic scenes. We attribute the failure to the design of the deformation field, which is built as a coordinate-based function. This approach is problematic because 3DGS is a mixture of multiple fields centered at the Gaussians, not just a single coordinate-based framework. To resolve this problem, we define the deformation as a function of per-Gaussian embeddings and temporal embeddings. Moreover, we decompose deformations as coarse and fine deformations to model slow and fast movements, respectively. Also, we introduce a local smoothness regularization for per-Gaussian embedding to improve the details in dynamic regions. Project page: //jeongminb.github.io/e-d3dgs/

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司