亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given a list L of elements and a property that L exhibits, ddmin is a well-known test input minimization algorithm designed to automatically eliminate irrelevant elements from L. This algorithm is extensively adopted in test input minimization and software debloating. Recently, ProbDD, an advanced variant of ddmin, has been proposed and achieved state-of-the-art performance. Employing Bayesian optimization, ProbDD predicts the likelihood of each element in L being essential, and statistically decides which elements and how many should be removed each time. Despite its impressive results, the theoretical probabilistic model of ProbDD is complex, and the specific factors driving its superior performance have not been investigated. In this paper, we conduct the first in-depth theoretical analysis of ProbDD, clarifying trends in probability and subset size changes while simplifying the probability model. Complementing this analysis, we perform empirical experiments, including success rate analysis, ablation studies, and analysis on trade-offs and limitations, to better understand and demystify this state-of-the-art algorithm. Our success rate analysis shows how ProbDD addresses bottlenecks of ddmin by skipping inefficient queries that attempt to delete complements of subsets and previously tried subsets. The ablation study reveals that randomness in ProbDD has no significant impact on efficiency. Based on these findings, we propose CDD, a simplified version of ProbDD, reducing complexity in both theory and implementation. Besides, the performance of CDD validates our key findings. Comprehensive evaluations across 76 benchmarks in test input minimization and software debloating show that CDD can achieve the same performance as ProbDD despite its simplification. These insights provide valuable guidance for future research and applications of test input minimization algorithms.

相關內容

Planning for sequential robotics tasks often requires integrated symbolic and geometric reasoning. TAMP algorithms typically solve these problems by performing a tree search over high-level task sequences while checking for kinematic and dynamic feasibility. This can be inefficient because, typically, candidate task plans resulting from the tree search ignore geometric information. This often leads to motion planning failures that require expensive backtracking steps to find alternative task plans. We propose a novel approach to TAMP called Stein Task and Motion Planning (STAMP) that relaxes the hybrid optimization problem into a continuous domain. This allows us to leverage gradients from differentiable physics simulation to fully optimize discrete and continuous plan parameters for TAMP. In particular, we solve the optimization problem using a gradient-based variational inference algorithm called Stein Variational Gradient Descent. This allows us to find a distribution of solutions within a single optimization run. Furthermore, we use an off-the-shelf differentiable physics simulator that is parallelized on the GPU to run parallelized inference over diverse plan parameters. We demonstrate our method on a variety of problems and show that it can find multiple diverse plans in a single optimization run while also being significantly faster than existing approaches.

This paper presents CARTOS, a charging-aware real-time operating system designed to enhance the functionality of intermittently-powered batteryless devices (IPDs) for various Internet of Things (IoT) applications. While IPDs offer significant advantages such as extended lifespan and operability in extreme environments, they pose unique challenges, including the need to ensure forward progress of program execution amidst variable energy availability and maintaining reliable real-time time behavior during power disruptions. To address these challenges, CARTOS introduces a mixed-preemption scheduling model that classifies tasks into computational and peripheral tasks, and ensures their efficient and timely execution by adopting just-in-time checkpointing for divisible computation tasks and uninterrupted execution for indivisible peripheral tasks. CARTOS also supports processing chains of tasks with precedence constraints and adapts its scheduling in response to environmental changes to offer continuous execution under diverse conditions. CARTOS is implemented with new APIs and components added to FreeRTOS but is designed for portability to other embedded RTOSs. Through real hardware experiments and simulations, CARTOS exhibits superior performance over state-of-the-art methods, demonstrating that it can serve as a practical platform for developing resilient, real-time sensing applications on IPDs.

Information extraction from textual data, where the query is represented by a finite transducer and the task is to enumerate all results without repetition, and its extension to the weighted case, where each output element has a weight and the output elements are to be enumerated sorted by their weights, are important and well studied problems in database theory. On the one hand, the first framework already covers the well-known case of regular document spanners, while the latter setting covers several practically relevant tasks that cannot be described in the unweighted setting. It is known that in the unweighted case this problem can be solved with linear time preprocessing O(|D|) and output-linear delay O(|s|) in data complexity, where D is the input data and s is the current output element. For the weighted case, Bourhis, Grez, Jachiet, and Riveros [ICDT 2021] recently designed an algorithm with linear time preprocessing, but the delay of O(|s| log(|D|)) depends on the size of the data. We first show how to leverage the existing results on enumerating shortest paths to obtain a simple alternative algorithm with linear preprocessing and a delay of O(|s_i| + min{ log(i), \log(|D|)}) for the i^{th} output element s_i (in data complexity); thus, substantially improving the previous algorithm. Next, we develop a technically involved rounding technique that allows us to devise an algorithm with linear time preprocessing and output-linear delay O(|s|) with high probability. To this end, we combine tools from algebra, high-dimensional geometry, and linear programming.

Metamodels, or the regression analysis of Monte Carlo simulation results, provide a powerful tool to summarize simulation findings. However, an underutilized approach is the multilevel metamodel (MLMM) that accounts for the dependent data structure that arises from fitting multiple models to the same simulated data set. In this study, we articulate the theoretical rationale for the MLMM and illustrate how it can improve the interpretability of simulation results, better account for complex simulation designs, and provide new insights into the generalizability of simulation findings.

In-context learning (ICL), the remarkable ability to solve a task from only input exemplars, is often assumed to be a unique hallmark of Transformer models. By examining commonly employed synthetic ICL tasks, we demonstrate that multi-layer perceptrons (MLPs) can also learn in-context. Moreover, MLPs, and the closely related MLP-Mixer models, learn in-context competitively with Transformers given the same compute budget in this setting. We further show that MLPs outperform Transformers on a series of classical tasks from psychology designed to test relational reasoning, which are closely related to in-context classification. These results underscore a need for studying in-context learning beyond attention-based architectures, while also challenging strong prior arguments about MLPs' limited ability to solve relational tasks. Altogether, our results highlight the unexpected competence of MLPs, and support the growing interest in all-MLP alternatives to task-specific architectures.

We propose a practical framework for designing a physically consistent reconfigurable intelligent surface (RIS) to overcome the inefficiency of the conventional phase gradient approach. For a section of Cape Town and across three different coverage enhancement scenarios, we optimize the amplitude of the RIS reradiation modes using Sionna ray tracing and a gradient-based learning technique. We then determine the required RIS surface/sheet impedance given the desired amplitudes for the reradiation modes, design the corresponding unitcells, and validate the performance through full-wave numerical simulations using CST Microwave Studio. We further validate our approach by fabricating a RIS using the parallel plate waveguide technique and conducting experimental measurements that align with our theoretical predictions.

Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

北京阿比特科技有限公司