亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Enterprise resource planning (ERP) software brings resources, data together to keep software-flow within business processes in a company. However, cloud computing's cheap, easy and quick management promise pushes business-owners for a transition from monolithic to a data-center/cloud based ERP. Since cloud-ERP development involves a cyclic process, namely planning, implementing, testing and upgrading, its adoption is realized as a deep recurrent neural network problem. Eventually, a classification algorithm based on long short term memory (LSTM) and TOPSIS is proposed to identify and rank, respectively, adoption features. Our theoretical model is validated over a reference model by articulating key players, services, architecture, functionalities. Qualitative survey is conducted among users by considering technology, innovation and resistance issues, to formulate hypotheses on key adoption factors.

相關內容

 是一種時間遞歸神經網絡(RNN)[1],論文首次發表于1997年。由于獨特的設計結構,LSTM適合于處理和預測時間序列中間隔和延遲非常長的重要事件。

Many developers rely on Large Language Models (LLMs) to facilitate software development. Nevertheless, these models have exhibited limited capabilities in the security domain. We introduce LLMSecGuard, an open-source framework that offers enhanced code security through the synergy between static code analyzers and LLMs. LLMSecGuard aims to equip practitioners with code solutions that are more secure than the code initially generated by LLMs. It also benchmarks LLMs, providing valuable insights into the evolving security properties of these models.

Relational database management systems (RDBMS) are widely used for the storage and retrieval of structured data. To derive insights beyond statistical aggregation, we typically have to extract specific subdatasets from the database using conventional database operations, and then apply deep neural networks (DNN) training and inference on these respective subdatasets in a separate machine learning system. The process can be prohibitively expensive, especially when there are a combinatorial number of subdatasets extracted for different analytical purposes. This calls for efficient in-database support of advanced analytical methods In this paper, we introduce LEADS, a novel SQL-aware dynamic model slicing technique to customize models for subdatasets specified by SQL queries. LEADS improves the predictive modeling of structured data via the mixture of experts (MoE) technique and maintains inference efficiency by a SQL-aware gating network. At the core of LEADS is the construction of a general model with multiple expert sub-models via MoE trained over the entire database. This SQL-aware MoE technique scales up the modeling capacity, enhances effectiveness, and preserves efficiency by activating only necessary experts via the gating network during inference. Additionally, we introduce two regularization terms during the training process of LEADS to strike a balance between effectiveness and efficiency. We also design and build an in-database inference system, called INDICES, to support end-to-end advanced structured data analytics by non-intrusively incorporating LEADS onto PostgreSQL. Our extensive experiments on real-world datasets demonstrate that LEADS consistently outperforms baseline models, and INDICES delivers effective in-database analytics with a considerable reduction in inference latency compared to traditional solutions.

As large language models (LLMs) develop ever-improving capabilities and are applied in real-world settings, it is important to understand their safety. While initial steps have been taken to evaluate the safety of general-knowledge LLMs, exposing some weaknesses, the safety of medical LLMs has not been sufficiently evaluated despite their high risks to personal health and safety, public health and safety, patient rights, and human rights. To address this gap, we conduct, to our knowledge, the first study of its kind to evaluate and improve the safety of medical LLMs. We find that 1) current medical LLMs do not meet standards of general or medical safety, as they readily comply with harmful requests and that 2) fine-tuning medical LLMs on safety demonstrations significantly improves their safety, reducing their tendency to comply with harmful requests. In addition, we present a definition of medical safety for LLMs and develop a benchmark dataset to evaluate and train for medical safety in LLMs. Poised at the intersection of research on machine learning safety and medical machine learning, this work casts light on the status quo of the safety of medical LLMs and motivates future work in this area, mitigating the risks of harm of LLMs in medicine.

Developing software projects allows students to put knowledge into practice and gain teamwork skills. However, assessing student performance in project-oriented courses poses significant challenges, particularly as the size of classes increases. The current paper introduces a fuzzy intelligent system designed to evaluate academic software projects using object-oriented programming and design course as an example. To establish evaluation criteria, we first conducted a survey of student project teams (n=31) and faculty (n=3) to identify key parameters and their applicable ranges. The selected criteria - clean code, use of inheritance, and functionality - were selected as essential for assessing the quality of academic software projects. These criteria were then represented as fuzzy variables with corresponding fuzzy sets. Collaborating with three experts, including one professor and two course instructors, we defined a set of fuzzy rules for a fuzzy inference system. This system processes the input criteria to produce a quantifiable measure of project success. The system demonstrated promising results in automating the evaluation of projects. Our approach standardizes project evaluations and helps to reduce the subjective bias in manual grading.

Despite great success in modeling visual perception, deep neural network based image quality assessment (IQA) still remains unreliable in real-world applications due to its vulnerability to adversarial perturbations and the inexplicit black-box structure. In this paper, we propose to build a trustworthy IQA model via Causal Perception inspired Representation Learning (CPRL), and a score reflection attack method for IQA model. More specifically, we assume that each image is composed of Causal Perception Representation (CPR) and non-causal perception representation (N-CPR). CPR serves as the causation of the subjective quality label, which is invariant to the imperceptible adversarial perturbations. Inversely, N-CPR presents spurious associations with the subjective quality label, which may significantly change with the adversarial perturbations. To extract the CPR from each input image, we develop a soft ranking based channel-wise activation function to mediate the causally sufficient (beneficial for high prediction accuracy) and necessary (beneficial for high robustness) deep features, and based on intervention employ minimax game to optimize. Experiments on four benchmark databases show that the proposed CPRL method outperforms many state-of-the-art adversarial defense methods and provides explicit model interpretation.

Automatic software fault localization plays an important role in software quality assurance by pinpointing faulty locations for easier debugging. Coverage-based fault localization, a widely used technique, employs statistics on coverage spectra to rank code based on suspiciousness scores. However, the rigidity of statistical approaches calls for learning-based techniques. Amongst all, Grace, a graph-neural network (GNN) based technique has achieved state-of-the-art due to its capacity to preserve coverage spectra, i.e., test-to-source coverage relationships, as precise abstract syntax-enhanced graph representation, mitigating the limitation of other learning-based technique which compresses the feature representation. However, such representation struggles with scalability due to the increasing complexity of software and associated coverage spectra and AST graphs. In this work, we proposed a new graph representation, DepGraph, that reduces the complexity of the graph representation by 70% in nodes and edges by integrating interprocedural call graph in the graph representation of the code. Moreover, we integrate additional features such as code change information in the graph as attributes so the model can leverage rich historical project data. We evaluate DepGraph using Defects4j 2.0.0, and it outperforms Grace by locating 20% more faults in Top-1 and improving the Mean First Rank (MFR) and the Mean Average Rank (MAR) by over 50% while decreasing GPU memory usage by 44% and training/inference time by 85%. Additionally, in cross-project settings, DepGraph surpasses the state-of-the-art baseline with a 42% higher Top-1 accuracy, and 68% and 65% improvement in MFR and MAR, respectively. Our study demonstrates DepGraph's robustness, achieving state-of-the-art accuracy and scalability for future extension and adoption.

This paper develops methods for proving Lyapunov stability of dynamical systems subject to disturbances with an unknown distribution. We assume only a finite set of disturbance samples is available and that the true online disturbance realization may be drawn from a different distribution than the given samples. We formulate an optimization problem to search for a sum-of-squares (SOS) Lyapunov function and introduce a distributionally robust version of the Lyapunov function derivative constraint. We show that this constraint may be reformulated as several SOS constraints, ensuring that the search for a Lyapunov function remains in the class of SOS polynomial optimization problems. For general systems, we provide a distributionally robust chance-constrained formulation for neural network Lyapunov function search. Simulations demonstrate the validity and efficiency of either formulation on non-linear uncertain dynamical systems.

The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.

北京阿比特科技有限公司