亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide the first convergence guarantees for the Consistency Models (CMs), a newly emerging type of one-step generative models that can generate comparable samples to those generated by Diffusion Models. Our main result is that, under the basic assumptions on score-matching errors, consistency errors and smoothness of the data distribution, CMs can efficiently sample from any realistic data distribution in one step with small $W_2$ error. Our results (1) hold for $L^2$-accurate score and consistency assumption (rather than $L^\infty$-accurate); (2) do note require strong assumptions on the data distribution such as log-Sobelev inequality; (3) scale polynomially in all parameters; and (4) match the state-of-the-art convergence guarantee for score-based generative models (SGMs). We also provide the result that the Multistep Consistency Sampling procedure can further reduce the error comparing to one step sampling, which support the original statement of "Consistency Models, Yang Song 2023". Our result further imply a TV error guarantee when take some Langevin-based modifications to the output distributions.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 樣本復雜度 · Networks · 無向圖 · 無向 ·
2023 年 10 月 10 日

We establish finite-sample guarantees for efficient proper learning of bounded-degree polytrees, a rich class of high-dimensional probability distributions and a subclass of Bayesian networks, a widely-studied type of graphical model. Recently, Bhattacharyya et al. (2021) obtained finite-sample guarantees for recovering tree-structured Bayesian networks, i.e., 1-polytrees. We extend their results by providing an efficient algorithm which learns $d$-polytrees in polynomial time and sample complexity for any bounded $d$ when the underlying undirected graph (skeleton) is known. We complement our algorithm with an information-theoretic sample complexity lower bound, showing that the dependence on the dimension and target accuracy parameters are nearly tight.

Markov chain Monte Carlo (MCMC) is a commonly used method for approximating expectations with respect to probability distributions. Uncertainty assessment for MCMC estimators is essential in practical applications. Moreover, for multivariate functions of a Markov chain, it is important to estimate not only the auto-correlation for each component but also to estimate cross-correlations, in order to better assess sample quality, improve estimates of effective sample size, and use more effective stopping rules. Berg and Song [2022] introduced the moment least squares (momentLS) estimator, a shape-constrained estimator for the autocovariance sequence from a reversible Markov chain, for univariate functions of the Markov chain. Based on this sequence estimator, they proposed an estimator of the asymptotic variance of the sample mean from MCMC samples. In this study, we propose novel autocovariance sequence and asymptotic variance estimators for Markov chain functions with multiple components, based on the univariate momentLS estimators from Berg and Song [2022]. We demonstrate strong consistency of the proposed auto(cross)-covariance sequence and asymptotic variance matrix estimators. We conduct empirical comparisons of our method with other state-of-the-art approaches on simulated and real-data examples, using popular samplers including the random-walk Metropolis sampler and the No-U-Turn sampler from STAN.

A connected matching in a graph G consists of a set of pairwise disjoint edges whose covered vertices induce a connected subgraph of G. While finding a connected matching of maximum cardinality is a well-solved problem, it is NP-hard to determine an optimal connected matching in an edge-weighted graph, even in the planar bipartite case. We present two mixed integer programming formulations and a sophisticated branch-and-cut scheme to find weighted connected matchings in general graphs. The formulations explore different polyhedra associated to this problem, including strong valid inequalities both from the matching polytope and from the connected subgraph polytope. We conjecture that one attains a tight approximation of the convex hull of connected matchings using our strongest formulation, and report encouraging computational results over DIMACS Implementation Challenge benchmark instances. The source code of the complete implementation is also made available.

While analogies are a common way to evaluate word embeddings in NLP, it is also of interest to investigate whether or not analogical reasoning is a task in itself that can be learned. In this paper, we test several ways to learn basic analogical reasoning, specifically focusing on analogies that are more typical of what is used to evaluate analogical reasoning in humans than those in commonly used NLP benchmarks. Our experiments find that models are able to learn analogical reasoning, even with a small amount of data. We additionally compare our models to a dataset with a human baseline, and find that after training, models approach human performance.

We present a coordination method for multiple mobile manipulators to sort objects in clutter. We consider the object rearrangement problem in which the objects must be sorted into different groups in a particular order. In clutter, the order constraints could not be easily satisfied since some objects occlude other objects so the occluded ones are not directly accessible to the robots. Those objects occluding others need to be moved more than once to make the occluded objects accessible. Such rearrangement problems fall into the class of nonmonotone rearrangement problems which are computationally intractable. While the nonmonotone problems with order constraints are harder, involving with multiple robots requires another computation for task allocation. The proposed method first finds a sequence of objects to be sorted using a search such that the order constraint in each group is satisfied. The search can solve nonmonotone instances that require temporal relocation of some objects to access the next object to be sorted. Once a complete sorting sequence is found, the objects in the sequence are assigned to multiple mobile manipulators using a greedy allocation method. We develop four versions of the method with different search strategies. In the experiments, we show that our method can find a sorting sequence quickly (e.g., 4.6 sec with 20 objects sorted into five groups) even though the solved instances include hard nonmonotone ones. The extensive tests and the experiments in simulation show the ability of the method to solve the real-world sorting problem using multiple mobile manipulators.

The moderate deviation regime is concerned with the finite block length trade-off between communication cost and error for information processing tasks in the asymptotic regime, where the communication cost approaches a capacity-like quantity and the error vanishes at the same time. We find exact characterisations of these trade-offs for a variety of fully quantum communication tasks, including quantum source coding, quantum state splitting, entanglement-assisted quantum channel coding, and entanglement-assisted quantum channel simulation. The main technical tool we derive is a tight relation between the partially smoothed max-information and the hypothesis testing relative entropy. This allows us to obtain the expansion of the partially smoothed max-information for i.i.d. states in the moderate deviation regime.

The ideal shock absorber combines high stiffness with high energy absorption whilst retaining structural integrity after impact and is scalable for industrial production. So far no structure meets all of these criteria. Here, we introduce a special occurrence of plastic buckling as a design concept for mechanical metamaterials that combine all the elements required of an ideal shock absorber. By striking a balance between plastic deformation and buckling, which we term yield buckling, these metamaterials exhibit sequential, maximally dissipative collapse combined with high strength and the preservation of structural integrity. Unlike existing structures, this design paradigm is applicable to all elastoplastic materials at any length scale and hence will lead to a new generation of shock absorbers with enhanced safety and sustainabilty in a myriad of high-tech applications.

We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve PDE- and ODE-constrained optimization problems on scenes with a complex geometry. It support static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library, and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and in physical validations.

A long-standing issue in the parallel-in-time community is the poor convergence of standard iterative parallel-in-time methods for hyperbolic partial differential equations (PDEs), and for advection-dominated PDEs more broadly. Here, a local Fourier analysis (LFA) convergence theory is derived for the two-level variant of the iterative parallel-in-time method of multigrid reduction-in-time (MGRIT). This closed-form theory allows for new insights into the poor convergence of MGRIT for advection-dominated PDEs when using the standard approach of rediscretizing the fine-grid problem on the coarse grid. Specifically, we show that this poor convergence arises, at least in part, from inadequate coarse-grid correction of certain smooth Fourier modes known as characteristic components, which was previously identified as causing poor convergence of classical spatial multigrid on steady-state advection-dominated PDEs. We apply this convergence theory to show that, for certain semi-Lagrangian discretizations of advection problems, MGRIT convergence using rediscretized coarse-grid operators cannot be robust with respect to CFL number or coarsening factor. A consequence of this analysis is that techniques developed for improving convergence in the spatial multigrid context can be re-purposed in the MGRIT context to develop more robust parallel-in-time solvers. This strategy has been used in recent work to great effect; here, we provide further theoretical evidence supporting the effectiveness of this approach.

A central challenge in the verification of quantum computers is benchmarking their performance as a whole and demonstrating their computational capabilities. In this work, we find a universal model of quantum computation, Bell sampling, that can be used for both of those tasks and thus provides an ideal stepping stone towards fault-tolerance. In Bell sampling, we measure two copies of a state prepared by a quantum circuit in the transversal Bell basis. We show that the Bell samples are classically intractable to produce and at the same time constitute what we call a circuit shadow: from the Bell samples we can efficiently extract information about the quantum circuit preparing the state, as well as diagnose circuit errors. In addition to known properties that can be efficiently extracted from Bell samples, we give two new and efficient protocols, a test for the depth of the circuit and an algorithm to estimate a lower bound to the number of T gates in the circuit. With some additional measurements, our algorithm learns a full description of states prepared by circuits with low T-count.

北京阿比特科技有限公司