Dimensionality reduction (DR) techniques help analysts to understand patterns in high-dimensional spaces. These techniques, often represented by scatter plots, are employed in diverse science domains and facilitate similarity analysis among clusters and data samples. For datasets containing many granularities or when analysis follows the information visualization mantra, hierarchical DR techniques are the most suitable approach since they present major structures beforehand and details on demand. However, current hierarchical DR techniques are not fully capable of addressing literature problems because they do not preserve the projection mental map across hierarchical levels or are not suitable for most data types. This work presents HUMAP, a novel hierarchical dimensionality reduction technique designed to be flexible on preserving local and global structures and preserve the mental map throughout hierarchical exploration. We provide empirical evidence of our technique's superiority compared with current hierarchical approaches and show two case studies to demonstrate its strengths.
This paper proposes a novel graph-based regularized regression estimator - the hierarchical feature regression (HFR) -, which mobilizes insights from the domains of machine learning and graph theory to estimate robust parameters for a linear regression. The estimator constructs a supervised feature graph that decomposes parameters along its edges, adjusting first for common variation and successively incorporating idiosyncratic patterns into the fitting process. The graph structure has the effect of shrinking parameters towards group targets, where the extent of shrinkage is governed by a hyperparamter, and group compositions as well as shrinkage targets are determined endogenously. The method offers rich resources for the visual exploration of the latent effect structure in the data, and demonstrates good predictive accuracy and versatility when compared to a panel of commonly used regularization techniques across a range of empirical and simulated regression tasks.
We consider a moving boundary problem with kinetic condition that describes the diffusion of solvent into rubber and study semi-discrete finite element approximations of the corresponding weak solutions. We report on both a priori and a posteriori error estimates for the mass concentration of the diffusants, and respectively, for the a priori unknown position of the moving boundary. Our working techniques include integral and energy-based estimates for a nonlinear parabolic problem posed in a transformed fixed domain combined with a suitable use of the interpolation-trace inequality to handle the interface terms. Numerical illustrations of our FEM approximations are within the experimental range and show good agreement with our theoretical investigation. This work is a preliminary investigation necessary before extending the current moving boundary modeling to account explicitly for the mechanics of hyperelastic rods to capture a directional swelling of the underlying elastomer.
Recent advances in quantized compressed sensing and high-dimensional estimation have shown that signal recovery is even feasible under strong non-linear distortions in the observation process. An important characteristic of associated guarantees is uniformity, i.e., recovery succeeds for an entire class of structured signals with a fixed measurement ensemble. However, despite significant results in various special cases, a general understanding of uniform recovery from non-linear observations is still missing. This paper develops a unified approach to this problem under the assumption of i.i.d. sub-Gaussian measurement vectors. Our main result shows that a simple least-squares estimator with any convex constraint can serve as a universal recovery strategy, which is outlier robust and does not require explicit knowledge of the underlying non-linearity. Based on empirical process theory, a key technical novelty is an approximative increment condition that can be implemented for all common types of non-linear models. This flexibility allows us to apply our approach to a variety of problems in non-linear compressed sensing and high-dimensional statistics, leading to several new and improved guarantees. Each of these applications is accompanied by a conceptually simple and systematic proof, which does not rely on any deeper properties of the observation model. On the other hand, known local stability properties can be incorporated into our framework in a plug-and-play manner, thereby implying near-optimal error bounds.
In line with the growing trend of using machine learning to help solve combinatorial optimisation problems, one promising idea is to improve node selection within a mixed integer programming (MIP) branch-and-bound tree by using a learned policy. Previous work using imitation learning indicates the feasibility of acquiring a node selection policy, by learning an adaptive node searching order. In contrast, our imitation learning policy is focused solely on learning which of a node's children to select. We present an offline method to learn such a policy in two settings: one that comprises a heuristic by committing to pruning of nodes; one that is exact and backtracks from a leaf to guarantee finding the optimal integer solution. The former setting corresponds to a child selector during plunging, while the latter is akin to a diving heuristic. We apply the policy within the popular open-source solver SCIP, in both heuristic and exact settings. Empirical results on five MIP datasets indicate that our node selection policy leads to solutions significantly more quickly than the state-of-the-art precedent in the literature. While we do not beat the highly-optimised SCIP state-of-practice baseline node selector in terms of solving time on exact solutions, our heuristic policies have a consistently better optimality gap than all baselines, if the accuracy of the predictive model is sufficient. Further, the results also indicate that, when a time limit is applied, our heuristic method finds better solutions than all baselines in the majority of problems tested. We explain the results by showing that the learned policies have imitated the SCIP baseline, but without the latter's early plunge abort. Our recommendation is that, despite the clear improvements over the literature, this kind of MIP child selector is better seen in a broader approach using learning in MIP branch-and-bound tree decisions.
Transformers are state-of-the-art in a wide range of NLP tasks and have also been applied to many real-world products. Understanding the reliability and certainty of transformer model predictions is crucial for building trustable machine learning applications, e.g., medical diagnosis. Although many recent transformer extensions have been proposed, the study of the uncertainty estimation of transformer models is under-explored. In this work, we propose a novel way to enable transformers to have the capability of uncertainty estimation and, meanwhile, retain the original predictive performance. This is achieved by learning a hierarchical stochastic self-attention that attends to values and a set of learnable centroids, respectively. Then new attention heads are formed with a mixture of sampled centroids using the Gumbel-Softmax trick. We theoretically show that the self-attention approximation by sampling from a Gumbel distribution is upper bounded. We empirically evaluate our model on two text classification tasks with both in-domain (ID) and out-of-domain (OOD) datasets. The experimental results demonstrate that our approach: (1) achieves the best predictive performance and uncertainty trade-off among compared methods; (2) exhibits very competitive (in most cases, improved) predictive performance on ID datasets; (3) is on par with Monte Carlo dropout and ensemble methods in uncertainty estimation on OOD datasets.
Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.
In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.
Hierarchical text classification, which aims to classify text documents into a given hierarchy, is an important task in many real-world applications. Recently, deep neural models are gaining increasing popularity for text classification due to their expressive power and minimum requirement for feature engineering. However, applying deep neural networks for hierarchical text classification remains challenging, because they heavily rely on a large amount of training data and meanwhile cannot easily determine appropriate levels of documents in the hierarchical setting. In this paper, we propose a weakly-supervised neural method for hierarchical text classification. Our method does not require a large amount of training data but requires only easy-to-provide weak supervision signals such as a few class-related documents or keywords. Our method effectively leverages such weak supervision signals to generate pseudo documents for model pre-training, and then performs self-training on real unlabeled data to iteratively refine the model. During the training process, our model features a hierarchical neural structure, which mimics the given hierarchy and is capable of determining the proper levels for documents with a blocking mechanism. Experiments on three datasets from different domains demonstrate the efficacy of our method compared with a comprehensive set of baselines.
UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.
There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.