亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a new estimator for average causal effects of a binary treatment with panel data in settings with general treatment patterns. Our approach augments the popular two-way-fixed-effects specification with unit-specific weights that arise from a model for the assignment mechanism. We show how to construct these weights in various settings, including the staggered adoption setting, where units opt into the treatment sequentially but permanently. The resulting estimator converges to an average (over units and time) treatment effect under the correct specification of the assignment model, even if the fixed effect model is misspecified. We show that our estimator is more robust than the conventional two-way estimator: it remains consistent if either the assignment mechanism or the two-way regression model is correctly specified. In addition, the proposed estimator performs better than the two-way-fixed-effect estimator if the outcome model and assignment mechanism are locally misspecified. This strong double robustness property underlines and quantifies the benefits of modeling the assignment process and motivates using our estimator in practice. We also discuss an extension of our estimator to handle dynamic treatment effects.

相關內容

Automatic verification of concurrent programs faces state explosion due to the exponential possible interleavings of its sequential components coupled with large or infinite state spaces. An alternative is deductive verification, where given a candidate invariant, we establish inductive invariance and show that any state satisfying the invariant is also safe. However, learning (inductive) program invariants is difficult. To this end, we propose a data-driven procedure to synthesize program invariants, where it is assumed that the program invariant is an expression that characterizes a (hopefully tight) over-approximation of the reachable program states. The main ideas of our approach are: (1) We treat a candidate invariant as a classifier separating states observed in (sampled) program traces from those speculated to be unreachable. (2) We develop an enumerative, template-free approach to learn such classifiers from positive and negative examples. At its core, our enumerative approach employs decision trees to generate expressions that do not over-fit to the observed states (and thus generalize). (3) We employ a runtime framework to monitor program executions that may refute the candidate invariant; every refutation triggers a revision of the candidate invariant. Our runtime framework can be viewed as an instance of statistical model checking, which gives us probabilistic guarantees on the candidate invariant. We also show that such in some cases, our counterexample-guided inductive synthesis approach converges (in probability) to an overapproximation of the reachable set of states. Our experimental results show that our framework excels in learning useful invariants using only a fraction of the set of reachable states for a wide variety of concurrent programs.

We consider estimation of a functional parameter of a realistically modeled data distribution based on independent and identically distributed observations. Suppose that the true function is defined as the minimizer of the expectation of a specified loss function over its parameter space. Estimators of the true function are provided, viewed as a data-adaptive coordinate transformation for the true function. For any $J$-dimensional real valued cadlag function with finite sectional variation norm, we define a candidate ensemble estimator as the mapping from the data into the composition of the cadlag function and the $J$ estimated functions. Using $V$-fold cross-validation, we define the cross-validated empirical risk of each cadlag function specific ensemble estimator. We then define the Meta Highly Adaptive Lasso Minimum Loss Estimator (M-HAL-MLE) as the cadlag function that minimizes this cross-validated empirical risk over all cadlag functions with a uniform bound on the sectional variation norm. For each of the $V$ training samples, this yields a composition of the M-HAL-MLE ensemble and the $J$ estimated functions trained on the training sample. We can estimate the true function with the average of these $V$ estimated functions, which we call the M-HAL super-learner. The M-HAL super-learner converges to the oracle estimator at a rate $n^{-2/3}$ (up till $\log n$-factor) w.r.t. excess risk, where the oracle estimator minimizes the excess risk among all considered ensembles. The excess risk of the oracle estimator and true function is generally second order. Under weak conditions on the $J$ candidate estimators, target features of the undersmoothed M-HAL super-learner are asymptotically linear estimators of the corresponding target features of true function, with influence curve either the efficient influence curve, or potentially, a super-efficient influence curve.

The high prevalence of cardiovascular diseases (CVDs) calls for accessible and cost-effective continuous cardiac monitoring tools. Despite Electrocardiography (ECG) being the gold standard, continuous monitoring remains a challenge, leading to the exploration of Photoplethysmography (PPG), a promising but more basic alternative available in consumer wearables. This notion has recently spurred interest in translating PPG to ECG signals. In this work, we introduce Region-Disentangled Diffusion Model (RDDM), a novel diffusion model designed to capture the complex temporal dynamics of ECG. Traditional Diffusion models like Denoising Diffusion Probabilistic Models (DDPM) face challenges in capturing such nuances due to the indiscriminate noise addition process across the entire signal. Our proposed RDDM overcomes such limitations by incorporating a novel forward process that selectively adds noise to specific regions of interest (ROI) such as QRS complex in ECG signals, and a reverse process that disentangles the denoising of ROI and non-ROI regions. Quantitative experiments demonstrate that RDDM can generate high-fidelity ECG from PPG in as few as 10 diffusion steps, making it highly effective and computationally efficient. Additionally, to rigorously validate the usefulness of the generated ECG signals, we introduce CardioBench, a comprehensive evaluation benchmark for a variety of cardiac-related tasks including heart rate and blood pressure estimation, stress classification, and the detection of atrial fibrillation and diabetes. Our thorough experiments show that RDDM achieves state-of-the-art performance on CardioBench. To the best of our knowledge, RDDM is the first diffusion model for cross-modal signal-to-signal translation in the bio-signal domain.

Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting. Previously proposed differentiable augmentation demonstrates improved data efficiency of training GANs. However, the augmentation implicitly introduces undesired invariance to augmentation for the discriminator since it ignores the change of semantics in the label space caused by data transformation, which may limit the representation learning ability of the discriminator and ultimately affect the generative modeling performance of the generator. To mitigate the negative impact of invariance while inheriting the benefits of data augmentation, we propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data. Particularly, the prediction targets of real data and generated data are required to be distinguished since they are different during training. We further encourage the generator to adversarially learn from the self-supervised discriminator by generating augmentation-predictable real and not fake data. This formulation connects the learning objective of the generator and the arithmetic $-$ harmonic mean divergence under certain assumptions. We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures on data-limited CIFAR-10, CIFAR-100, FFHQ, LSUN-Cat, and five low-shot datasets. Experimental results demonstrate significant improvements of our method over SOTA methods in training data-efficient GANs.

Anytime multi-agent path finding (MAPF) is a promising approach to scalable path optimization in large-scale multi-agent systems. State-of-the-art anytime MAPF is based on Large Neighborhood Search (LNS), where a fast initial solution is iteratively optimized by destroying and repairing a fixed number of parts, i.e., the neighborhood, of the solution, using randomized destroy heuristics and prioritized planning. Despite their recent success in various MAPF instances, current LNS-based approaches lack exploration and flexibility due to greedy optimization with a fixed neighborhood size which can lead to low quality solutions in general. So far, these limitations have been addressed with extensive prior effort in tuning or offline machine learning beyond actual planning. In this paper, we focus on online learning in LNS and propose Bandit-based Adaptive LArge Neighborhood search Combined with Exploration (BALANCE). BALANCE uses a bi-level multi-armed bandit scheme to adapt the selection of destroy heuristics and neighborhood sizes on the fly during search. We evaluate BALANCE on multiple maps from the MAPF benchmark set and empirically demonstrate cost improvements of at least 50% compared to state-of-the-art anytime MAPF in large-scale scenarios. We find that Thompson Sampling performs particularly well compared to alternative multi-armed bandit algorithms.

Audit logs are one of the most important tools for transparently tracking system events and maintaining continuous oversight in corporate organizations and enterprise business systems. There are many cases where the audit logs contain sensitive data, or the audit logs are enormous. In these situations, dealing with a subset of the data is more practical than the entire data set. To provide a secure solution to handle these issues, a sanitizable signature scheme (SSS) is a viable cryptographic primitive. Herein, we first present the \textit{first} post-quantum secure multivariate-based SSS, namely ${\sf Mul-SAN}$. Our proposed design provides unforgeability, privacy, immutability, signer accountability, and sanitizer accountability under the assumption that the $MQ$ problem is NP-hard. ${\sf Mul-SAN}$ is very efficient and only requires computing field multiplications and additions over a finite field for its implementation. ${\sf Mul-SAN}$ presents itself as a practical method to partially delegate control of the authenticated data in avenues like the healthcare industry and government organizations. We also explore using Blockchain to provide a tamper-proof and robust audit log mechanism.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司