Partially supervised segmentation is a label-saving method based on datasets with fractional classes labeled and intersectant. However, it is still far from landing on real-world medical applications due to privacy concerns and data heterogeneity. As a remedy without privacy leakage, federated partially supervised segmentation (FPSS) is formulated in this work. The main challenges for FPSS are class heterogeneity and client drift. We propose a Unified Federated Partially-labeled Segmentation (UFPS) framework to segment pixels within all classes for partially-annotated datasets by training a totipotential global model without class collision. Our framework includes Unified Label Learning and sparsed Unified Sharpness Aware Minimization for unification of class and feature space, respectively. We find that vanilla combinations for traditional methods in partially supervised segmentation and federated learning are mainly hampered by class collision through empirical study. Our comprehensive experiments on real medical datasets demonstrate better deconflicting and generalization ability of UFPS compared with modified methods.
A technique that allows a formation-enforcing control (FEC) derived from graph rigidity theory to interface with a realistic relative localization system onboard lightweight Unmanned Aerial Vehicles (UAVs) is proposed in this paper. The proposed methodology enables reliable real-world deployment of UAVs in tight formation using real relative localization systems burdened by non-negligible sensory noise, which is typically not fully taken into account in FEC algorithms. The proposed solution is based on decomposition of the gradient descent-based FEC command into interpretable elements, and then modifying these individually based on the estimated distribution of sensory noise, such that the resulting action limits the probability of overshooting the desired formation. The behavior of the system has been analyzed and the practicality of the proposed solution has been compared to pure gradient-descent in real-world experiments where it presented significantly better performance in terms of oscillations, deviation from the desired state and convergence time.
Gesture recognition is an indispensable component of natural and efficient human-computer interaction technology, particularly in desktop-level applications, where it can significantly enhance people's productivity. However, the current gesture recognition community lacks a suitable desktop-level (top-view perspective) dataset for lightweight gesture capture devices. In this study, we have established a dataset named GR4DHCI. What distinguishes this dataset is its inherent naturalness, intuitive characteristics, and diversity. Its primary purpose is to serve as a valuable resource for the development of desktop-level portable applications. GR4DHCI comprises over 7,000 gesture samples and a total of 382,447 frames for both Stereo IR and skeletal modalities. We also address the variances in hand positioning during desktop interactions by incorporating 27 different hand positions into the dataset. Building upon the GR4DHCI dataset, we conducted a series of experimental studies, the results of which demonstrate that the fine-grained classification blocks proposed in this paper can enhance the model's recognition accuracy. Our dataset and experimental findings presented in this paper are anticipated to propel advancements in desktop-level gesture recognition research.
In this paper, the surface of revolution discrete element method (SR-DEM) is introduced to simulate systems of particles with closed surfaces of revolution. Due to the cylindrical symmetry of a surface of revolution, the geometry of any cross-section about the axis of rotation remains the same. Taking advantage of this geometric feature, a node-to-cross-section contact algorithm is proposed for efficient contact detection between particles with a surface of revolution. In our SR-DEM framework, the contact algorithm is realized in a master-slave fashion: the master particle is approximated by its surface nodes, while the slave particle is represented by a signed distance field (SDF) of the cross-section about the axis of rotation. This hybrid formulation in both 2D and 3D space allows a very efficient contact calculation yet relatively simple code implementation. We then apply SR-DEM to simulate particle-particle, particle-wall impact, granular packing in a cylindrical container, and tablets in a rotating drum, to demonstrate SR-DEM's ability to predict the post-impact velocities, packing porosity, and dynamic angle of repose, respectively. Finally, we suggest a simple approach to find an optimal surface resolution, by increasing the number of surface nodes until some of the bulk properties that could characterize the system converge.
MDS codes have diverse practical applications in communication systems, data storage, and quantum codes due to their algebraic properties and optimal error-correcting capability. In this paper, we focus on a class of linear codes and establish some sufficient and necessary conditions for them being MDS. Notably, these codes differ from Reed-Solomon codes up to monomial equivalence. Additionally, we also explore the cases in which these codes are almost MDS or near MDS. Applying our main results, we determine the covering radii and deep holes of the dual codes associated with specific Roth-Lempel codes and discover an infinite family of (almost) optimally extendable codes with dimension three.
The homogenization of elliptic divergence-type fourth-order operators with periodic coefficients is studied in a (periodic) domain. The aim is to find an operator with constant coefficients and represent the equation through a perturbation around this operator. The resolvent is found as $L^2 \to L^2$ operator using the Neumann series for the periodic fundamental solution of biharmonic operator. Results are based on some auxiliary Lemmas suggested by Bensoussan in 1986, Zhikov in 1991, Yu. Grabovsky and G. Milton in 1998, Pastukhova in 2016. Operators of the type considered in the paper appear in the study of the elastic properties of thin plates. The choice of the operator with constant coefficients is discussed separately and chosen in an optimal way w.r.t. the spectral radius and convergence of the Neumann series and uses the known bounds for ''homogenized'' coefficients. Similar ideas are usually applied for the construction of preconditioners for iterative solvers for finite dimensional problems resulting from discretized PDEs. The method presented is similar to Cholesky factorization transferred to elliptic operators (as in references mentioned above). Furthermore, the method can be applied to non-linear problems.
Far-field speech recognition is a challenging task that conventionally uses signal processing beamforming to attack noise and interference problem. But the performance has been found usually limited due to heavy reliance on environmental assumption. In this paper, we propose a unified multichannel far-field speech recognition system that combines the neural beamforming and transformer-based Listen, Spell, Attend (LAS) speech recognition system, which extends the end-to-end speech recognition system further to include speech enhancement. Such framework is then jointly trained to optimize the final objective of interest. Specifically, factored complex linear projection (fCLP) has been adopted to form the neural beamforming. Several pooling strategies to combine look directions are then compared in order to find the optimal approach. Moreover, information of the source direction is also integrated in the beamforming to explore the usefulness of source direction as a prior, which is usually available especially in multi-modality scenario. Experiments on different microphone array geometry are conducted to evaluate the robustness against spacing variance of microphone array. Large in-house databases are used to evaluate the effectiveness of the proposed framework and the proposed method achieve 19.26\% improvement when compared with a strong baseline.
We introduce two iterative methods, GPBiLQ and GPQMR, for solving unsymmetric partitioned linear systems. The basic mechanism underlying GPBiLQ and GPQMR is a novel simultaneous tridiagonalization via biorthogonality that allows for short-recurrence iterative schemes. Similar to the biconjugate gradient method, it is possible to develop another method, GPBiCG, whose iterate (if it exists) can be obtained inexpensively from the GPBiLQ iterate. Whereas the iterate of GPBiCG may not exist, the iterates of GPBiLQ and GPQMR are always well defined as long as the biorthogonal tridiagonal reduction process does not break down. We discuss connections between the proposed methods and some existing methods, and give numerical experiments to illustrate the performance of the proposed methods.
Gradient-enhanced Kriging (GE-Kriging) is a well-established surrogate modelling technique for approximating expensive computational models. However, it tends to get impractical for high-dimensional problems due to the size of the inherent correlation matrix and the associated high-dimensional hyper-parameter tuning problem. To address these issues, a new method, called sliced GE-Kriging (SGE-Kriging), is developed in this paper for reducing both the size of the correlation matrix and the number of hyper-parameters. We first split the training sample set into multiple slices, and invoke Bayes' theorem to approximate the full likelihood function via a sliced likelihood function, in which multiple small correlation matrices are utilized to describe the correlation of the sample set rather than one large one. Then, we replace the original high-dimensional hyper-parameter tuning problem with a low-dimensional counterpart by learning the relationship between the hyper-parameters and the derivative-based global sensitivity indices. The performance of SGE-Kriging is finally validated by means of numerical experiments with several benchmarks and a high-dimensional aerodynamic modeling problem. The results show that the SGE-Kriging model features an accuracy and robustness that is comparable to the standard one but comes at much less training costs. The benefits are most evident for high-dimensional problems with tens of variables.
Histopathological image classification is an important task in medical image analysis. Recent approaches generally rely on weakly supervised learning due to the ease of acquiring case-level labels from pathology reports. However, patch-level classification is preferable in applications where only a limited number of cases are available or when local prediction accuracy is critical. On the other hand, acquiring extensive datasets with localized labels for training is not feasible. In this paper, we propose a semi-supervised patch-level histopathological image classification model, named CLASS-M, that does not require extensively labeled datasets. CLASS-M is formed by two main parts: a contrastive learning module that uses separated Hematoxylin and Eosin images generated through an adaptive stain separation process, and a module with pseudo-labels using MixUp. We compare our model with other state-of-the-art models on two clear cell renal cell carcinoma datasets. We demonstrate that our CLASS-M model has the best performance on both datasets. Our code is available at github.com/BzhangURU/Paper_CLASS-M/tree/main
We introduce a novel sampler called the energy based diffusion generator for generating samples from arbitrary target distributions. The sampling model employs a structure similar to a variational autoencoder, utilizing a decoder to transform latent variables from a simple distribution into random variables approximating the target distribution, and we design an encoder based on the diffusion model. Leveraging the powerful modeling capacity of the diffusion model for complex distributions, we can obtain an accurate variational estimate of the Kullback-Leibler divergence between the distributions of the generated samples and the target. Moreover, we propose a decoder based on generalized Hamiltonian dynamics to further enhance sampling performance. Through empirical evaluation, we demonstrate the effectiveness of our method across various complex distribution functions, showcasing its superiority compared to existing methods.