亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent interest in Large Vision-Language Models (LVLMs) for practical applications is moderated by the significant challenge of hallucination or the inconsistency between the factual information and the generated text. In this paper, we first perform an in-depth analysis of hallucinations and discover several novel insights about how and when LVLMs hallucinate. From our analysis, we show that: (1) The community's efforts have been primarily targeted towards reducing hallucinations related to visual recognition (VR) prompts (e.g., prompts that only require describing the image), thereby ignoring hallucinations for cognitive prompts (e.g., prompts that require additional skills like reasoning on contents of the image). (2) LVLMs lack visual perception, i.e., they can see but not necessarily understand or perceive the input image. We analyze responses to cognitive prompts and show that LVLMs hallucinate due to a perception gap: although LVLMs accurately recognize visual elements in the input image and possess sufficient cognitive skills, they struggle to respond accurately and hallucinate. To overcome this shortcoming, we propose Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method for alleviating hallucinations. Specifically, we first describe the image and add it as a prefix to the instruction. Next, during auto-regressive decoding, we sample from the plausible candidates according to their KL-Divergence (KLD) to the description, where lower KLD is given higher preference. Experimental results on several benchmarks and LVLMs show that VDGD improves significantly over other baselines in reducing hallucinations. We also propose VaLLu, a benchmark for the comprehensive evaluation of the cognitive capabilities of LVLMs.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

Direct Preference Optimisation (DPO) is effective at significantly improving the performance of large language models (LLMs) on downstream tasks such as reasoning, summarisation, and alignment. Using pairs of preferred and dispreferred data, DPO models the relative probability of picking one response over another. In this work, first we show theoretically that the standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases. We then show empirically that this phenomenon occurs when fine-tuning LLMs on common datasets, especially datasets in which the edit distance between pairs of completions is low. Using these insights, we design DPO-Positive (DPOP), a new loss function and training procedure which avoids this failure mode. Surprisingly, we find that DPOP outperforms DPO and other fine-tuning procedures across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions. Furthermore, we find that the DPOP-tuned model outperforms the DPO-tuned model (all else equal) on benchmarks independent of the fine-tuning data, such as MT-Bench. Finally, using DPOP, we create and open-source Smaug-34B and Smaug-72B, with the latter becoming the first open-source LLM to surpass an average accuracy of 80% on the HuggingFace Open LLM Leaderboard.

The proliferation of Knowledge Graphs (KGs) that support a wide variety of applications, like entity search, question answering and recommender systems, has led to the need for identifying overlapping information among different KGs. Entity Alignment (EA) is the problem of detecting such overlapping information among KGs that refer to the same real-world entities. Recent works have shown a great potential in exploiting KG embeddings for the task of EA, with most works focusing on the structural representation of entities (i.e., entity neighborhoods) in a KG and some works also exploiting the available factual information of entities (e.g., their names and associated literal values). However, real-word KGs exhibit high levels of structural and semantic heterogeneity, making EA a challenging task in which most existing methods struggle to achieve good results. In this work, we propose HybEA, an open-source EA method that focuses on both structure and facts, using two separate attention-based models. Our experimental results show that HybEA outperforms state-of-the-art methods by at least 5% and as much as 20+% (with an average difference of 11+%) Hits@1, in 5 widely used benchmark datasets.

Advances in Artificial Intelligence (AI) are helping tackle a growing number of societal challenges, demonstrating technology's increasing capability to address complex issues, including those outlined in the United Nations (UN) Sustainable Development Goals (SDGs). Despite global efforts, 80 percent of SDG targets have deviated, stalled, or regressed, and only 15 percent are on track as of 2023, illustrating the urgency of accelerating efforts to meet the goals by 2030. We draw on Google's internal and collaborative research, technical work, and social impact initiatives to show AI's potential to accelerate action on the SDGs and make substantive progress to help address humanity's most pressing challenges. The paper highlights AI capabilities (including computer vision, generative AI, natural language processing, and multimodal AI) and showcases how AI is altering how we approach problem-solving across all 17 SDGs through use cases, with a spotlight on AI-powered innovation in health, education, and climate. We then offer insights on AI development and deployment to drive bold and responsible innovation, enhance impact, close the accessibility gap, and ensure that everyone, everywhere, can benefit from AI.

AI regulations are expected to prohibit machine learning models from using sensitive attributes during training. However, the latest Natural Language Processing (NLP) classifiers, which rely on deep learning, operate as black-box systems, complicating the detection and remediation of such misuse. Traditional bias mitigation methods in NLP aim for comparable performance across different groups based on attributes like gender or race but fail to address the underlying issue of reliance on protected attributes. To partly fix that, we introduce NLPGuard, a framework for mitigating the reliance on protected attributes in NLP classifiers. NLPGuard takes an unlabeled dataset, an existing NLP classifier, and its training data as input, producing a modified training dataset that significantly reduces dependence on protected attributes without compromising accuracy. NLPGuard is applied to three classification tasks: identifying toxic language, sentiment analysis, and occupation classification. Our evaluation shows that current NLP classifiers heavily depend on protected attributes, with up to $23\%$ of the most predictive words associated with these attributes. However, NLPGuard effectively reduces this reliance by up to $79\%$, while slightly improving accuracy.

As Artificial Intelligence (AI) models are gradually being adopted in real-life applications, the explainability of the model used is critical, especially in high-stakes areas such as medicine, finance, etc. Among the commonly used models, Linear Discriminant Analysis (LDA) is a widely used classification tool that is also explainable thanks to its ability to model class distributions and maximize class separation through linear feature combinations. Nevertheless, real-world data is frequently incomplete, presenting significant challenges for classification tasks and model explanations. In this paper, we propose a novel approach to LDA under missing data, termed \textbf{\textit{Weighted missing Linear Discriminant Analysis (WLDA)}}, to directly classify observations in data that contains missing values without imputation effectively by estimating the parameters directly on missing data and use a weight matrix for missing values to penalize missing entries during classification. Furthermore, we also analyze the theoretical properties and examine the explainability of the proposed technique in a comprehensive manner. Experimental results demonstrate that WLDA outperforms conventional methods by a significant margin, particularly in scenarios where missing values are present in both training and test sets.

Collaborative Perception (CP) has been a promising solution to address occlusions in the traffic environment by sharing sensor data among collaborative vehicles (CoV) via vehicle-to-everything (V2X) network. With limited wireless bandwidth, CP necessitates task-oriented and receiver-aware sensor scheduling to prioritize important and complementary sensor data. However, due to vehicular mobility, it is challenging and costly to obtain the up-to-date perception topology, i.e., whether a combination of CoVs can jointly detect an object. In this paper, we propose a combinatorial mobility-aware sensor scheduling (C-MASS) framework for CP with minimal communication overhead. Specifically, detections are replayed with sensor data from individual CoVs and pairs of CoVs to maintain an empirical perception topology up to the second order, which approximately represents the complete perception topology. A hybrid greedy algorithm is then proposed to solve a variant of the budgeted maximum coverage problem with a worst-case performance guarantee. The C-MASS scheduling algorithm adapts the greedy algorithm by incorporating the topological uncertainty and the unexplored time of CoVs to balance exploration and exploitation, addressing the mobility challenge. Extensive numerical experiments demonstrate the near-optimality of the proposed C-MASS framework in both edge-assisted and distributed CP configurations. The weighted recall improvements over object-level CP are 5.8% and 4.2%, respectively. Compared to distance-based and area-based greedy heuristics, the gaps to the offline optimal solutions are reduced by up to 75% and 71%, respectively.

The introduction of ChatGPT has led to a significant increase in the utilization of Large Language Models (LLMs) for addressing downstream tasks. There's an increasing focus on cost-efficient training and deployment within this context. Low-cost training and deployment of LLMs represent the future development trend. This paper reviews the evolution of large language model training techniques and inference deployment technologies aligned with this emerging trend. The discussion on training includes various aspects, including data preprocessing, training architecture, pre-training tasks, parallel training, and relevant content related to model fine-tuning. On the inference side, the paper covers topics such as model compression, parallel computation, memory scheduling, and structural optimization. It also explores LLMs' utilization and provides insights into their future development.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司