亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reconstructing interacting hands from monocular RGB data is a challenging task, as it involves many interfering factors, e.g. self- and mutual occlusion and similar textures. Previous works only leverage information from a single RGB image without modeling their physically plausible relation, which leads to inferior reconstruction results. In this work, we are dedicated to explicitly exploiting spatial-temporal information to achieve better interacting hand reconstruction. On one hand, we leverage temporal context to complement insufficient information provided by the single frame, and design a novel temporal framework with a temporal constraint for interacting hand motion smoothness. On the other hand, we further propose an interpenetration detection module to produce kinetically plausible interacting hands without physical collisions. Extensive experiments are performed to validate the effectiveness of our proposed framework, which achieves new state-of-the-art performance on public benchmarks.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · tuning · 負例 · 樣本 · 情景 ·
2023 年 9 月 28 日

Zero-shot translation (ZST), which is generally based on a multilingual neural machine translation model, aims to translate between unseen language pairs in training data. The common practice to guide the zero-shot language mapping during inference is to deliberately insert the source and target language IDs, e.g., <EN> for English and <DE> for German. Recent studies have shown that language IDs sometimes fail to navigate the ZST task, making them suffer from the off-target problem (non-target language words exist in the generated translation) and, therefore, difficult to apply the current multilingual translation model to a broad range of zero-shot language scenarios. To understand when and why the navigation capabilities of language IDs are weakened, we compare two extreme decoder input cases in the ZST directions: Off-Target (OFF) and On-Target (ON) cases. By contrastively visualizing the contextual word representations (CWRs) of these cases with teacher forcing, we show that 1) the CWRs of different languages are effectively distributed in separate regions when the sentence and ID are matched (ON setting), and 2) if the sentence and ID are unmatched (OFF setting), the CWRs of different languages are chaotically distributed. Our analyses suggest that although they work well in ideal ON settings, language IDs become fragile and lose their navigation ability when faced with off-target tokens, which commonly exist during inference but are rare in training scenarios. In response, we employ unlikelihood tuning on the negative (OFF) samples to minimize their probability such that the language IDs can discriminate between the on- and off-target tokens during training. Experiments spanning 40 ZST directions show that our method reduces the off-target ratio by -48.0% on average, leading to a +9.1 BLEU improvement with only an extra +0.3% tuning cost.

Bayesian optimization (BO) is a popular black-box function optimization method, which makes sequential decisions based on a Bayesian model, typically a Gaussian process (GP), of the function. To ensure the quality of the model, transfer learning approaches have been developed to automatically design GP priors by learning from observations on "training" functions. These training functions are typically required to have the same domain as the "test" function (black-box function to be optimized). In this paper, we introduce MPHD, a model pre-training method on heterogeneous domains, which uses a neural net mapping from domain-specific contexts to specifications of hierarchical GPs. MPHD can be seamlessly integrated with BO to transfer knowledge across heterogeneous search spaces. Our theoretical and empirical results demonstrate the validity of MPHD and its superior performance on challenging black-box function optimization tasks.

Parameter inference for dynamical models of (bio)physical systems remains a challenging problem. Intractable gradients, high-dimensional spaces, and non-linear model functions are typically problematic without large computational budgets. A recent body of work in that area has focused on Bayesian inference methods, which consider parameters under their statistical distributions and therefore, do not derive point estimates of optimal parameter values. Here we propose a new metaheuristic that drives dimensionality reductions from feature-informed transformations (DR-FFIT) to address these bottlenecks. DR-FFIT implements an efficient sampling strategy that facilitates a gradient-free parameter search in high-dimensional spaces. We use artificial neural networks to obtain differentiable proxies for the model's features of interest. The resulting gradients enable the estimation of a local active subspace of the model within a defined sampling region. This approach enables efficient dimensionality reductions of highly non-linear search spaces at a low computational cost. Our test data show that DR-FFIT boosts the performances of random-search and simulated-annealing against well-established metaheuristics, and improves the goodness-of-fit of the model, all within contained run-time costs.

This paper provides a finite-sample analysis of a passive stochastic gradient Langevin dynamics algorithm (PSGLD) designed to achieve adaptive inverse reinforcement learning (IRL). By passive, we mean that the noisy gradients available to the PSGLD algorithm (inverse learning process) are evaluated at randomly chosen points by an external stochastic gradient algorithm (forward learner) that aims to optimize a cost function. The PSGLD algorithm acts as a randomized sampler to achieve adaptive IRL by reconstructing this cost function nonparametrically from the stationary measure of a Langevin diffusion. Previous work has analyzed the asymptotic performance of this passive algorithm using weak convergence techniques. This paper analyzes the non-asymptotic (finite-sample) performance using a logarithmic-Sobolev inequality and the Otto-Villani Theorem. We obtain finite-sample bounds on the 2-Wasserstein distance between the estimates generated by the PSGLD algorithm and the cost function. Apart from achieving finite-sample guarantees for adaptive IRL, this work extends a line of research in analysis of passive stochastic gradient algorithms to the finite-sample regime for Langevin dynamics.

We present a generalized linear structural causal model, coupled with a novel data-adaptive linear regularization, to recover causal directed acyclic graphs (DAGs) from time series. By leveraging a recently developed stochastic monotone Variational Inequality (VI) formulation, we cast the causal discovery problem as a general convex optimization. Furthermore, we develop a non-asymptotic recovery guarantee and quantifiable uncertainty by solving a linear program to establish confidence intervals for a wide range of non-linear monotone link functions. We validate our theoretical results and show the competitive performance of our method via extensive numerical experiments. Most importantly, we demonstrate the effectiveness of our approach in recovering highly interpretable causal DAGs over Sepsis Associated Derangements (SADs) while achieving comparable prediction performance to powerful ``black-box'' models such as XGBoost. Thus, the future adoption of our proposed method to conduct continuous surveillance of high-risk patients by clinicians is much more likely.

Despite having the same basic prophet inequality setup and model of loss aversion, conclusions in our multi-dimensional model differs considerably from the one-dimensional model of Kleinberg et al. For example, Kleinberg et al. gives a tight closed-form on the competitive ratio that an online decision-maker can achieve as a function of $\lambda$, for any $\lambda \geq 0$. In our multi-dimensional model, there is a sharp phase transition: if $k$ denotes the number of dimensions, then when $\lambda \cdot (k-1) \geq 1$, no non-trivial competitive ratio is possible. On the other hand, when $\lambda \cdot (k-1) < 1$, we give a tight bound on the achievable competitive ratio (similar to Kleinberg et al.). As another example, Kleinberg et al. uncovers an exponential improvement in their competitive ratio for the random-order vs. worst-case prophet inequality problem. In our model with $k\geq 2$ dimensions, the gap is at most a constant-factor. We uncover several additional key differences in the multi- and single-dimensional models.

Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司