亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Using observed language to understand interpersonal interactions is important in high-stakes decision making. We propose a causal research design for observational (non-experimental) data to estimate the natural direct and indirect effects of social group signals (e.g. race or gender) on speakers' responses with separate aspects of language as causal mediators. We illustrate the promises and challenges of this framework via a theoretical case study of the effect of an advocate's gender on interruptions from justices during U.S. Supreme Court oral arguments. We also discuss challenges conceptualizing and operationalizing causal variables such as gender and language that comprise of many components, and we articulate technical open challenges such as temporal dependence between language mediators in conversational settings.

相關內容

We propose kernel ridge regression estimators for mediation analysis and dynamic treatment effects over short horizons. We allow treatments, covariates, and mediators to be discrete or continuous, and low, high, or infinite dimensional. We propose estimators of means, increments, and distributions of counterfactual outcomes with closed form solutions in terms of kernel matrix operations. For the continuous treatment case, we prove uniform consistency with finite sample rates. For the discrete treatment case, we prove root-n consistency, Gaussian approximation, and semiparametric efficiency. We conduct simulations then estimate mediated and dynamic treatment effects of the US Job Corps program for disadvantaged youth.

A major task in genetic studies is to identify genes related to human diseases and traits to understand functional characteristics of genetic mutations and enhance patient diagnosis. Besides marginal analyses of individual genes, identification of gene pathways, i.e., a set of genes with known interactions that collectively contribute to specific biological functions, can provide more biologically meaningful results. Such gene pathway analysis can be formulated into a high-dimensional two-sample testing problem. Due to the typically limited sample size of gene expression datasets, most existing two-sample tests may have compromised powers because they ignore or only inefficiently incorporate the auxiliary pathway information on gene interactions. We propose T2-DAG, a Hotelling's $T^2$-type test for detecting differentially expressed gene pathways, which efficiently leverages the auxiliary pathway information on gene interactions through a linear structural equation model. We establish the asymptotic distribution of the test statistic under pertinent assumptions. Simulation studies under various scenarios show that T2-DAG outperforms several representative existing methods with well-controlled type-I error rates and substantially improved powers, even with incomplete or inaccurate pathway information or unadjusted confounding effects. We also illustrate the performance of T2-DAG in an application to detect differentially expressed KEGG pathways between different stages of lung cancer.

We propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We utilize posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification, and provides a consistent variance estimator when both models are correctly specified. In simulations, we illustrate the utility of these results in difficult settings such as high-dimensional covariate spaces or highly flexible models for the propensity score and outcome regression. Lastly, we analyze environmental exposure data from NHANES to identify how the effects of these exposures vary by subject-level characteristics.

Clinical studies often encounter with truncation-by-death problems, which may render the outcomes undefined. Statistical analysis based only on observed survivors may lead to biased results because the characters of survivors may differ greatly between treatment groups. Under the principal stratification framework, a meaningful causal parameter, the survivor average causal effect, in the always-survivor group can be defined. This causal parameter may not be identifiable in observational studies where the treatment assignment and the survival or outcome process are confounded by unmeasured features. In this paper, we propose a new method to deal with unmeasured confounding when the outcome is truncated by death. First, a new method is proposed to identify the heterogeneous conditional survivor average causal effect based on a substitutional variable under monotonicity. Second, under additional assumptions, the survivor average causal effect on the overall population is also identified. Furthermore, we consider estimation and inference for the conditional survivor average causal effect based on parametric and nonparametric methods with good asymptotic properties. Good finite-sample properties are demonstrated by simulation and sensitivity analysis. The proposed method is applied to investigate the effect of allogeneic stem cell transplantation types on leukemia relapse.

Proximal causal inference was recently proposed as a framework to identify causal effects from observational data in the presence of hidden confounders for which proxies are available. In this paper, we extend the proximal causal approach to settings where identification of causal effects hinges upon a set of mediators which unfortunately are not directly observed, however proxies of the hidden mediators are measured. Specifically, we establish (i) a new hidden front-door criterion which extends the classical front-door result to allow for hidden mediators for which proxies are available; (ii) We extend causal mediation analysis to identify direct and indirect causal effects under unconfoundedness conditions in a setting where the mediator in view is hidden, but error prone proxies of the latter are available. We view (i) and (ii) as important steps towards the practical application of front-door criteria and mediation analysis as mediators are almost always error prone and thus, the most one can hope for in practice is that our measurements are at best proxies of mediating mechanisms. Finally, we show that identification of certain causal effects remains possible even in settings where challenges in (i) and (ii) might co-exist.

Process models depict crucial artifacts for organizations regarding documentation, communication, and collaboration. The proper comprehension of such models is essential for an effective application. An important aspect in process model literacy constitutes the question how the information presented in process models is extracted and processed by the human visual system? For such visuospatial tasks, the visual system deploys a set of elemental operations, from whose compositions different visual routines are produced. This paper provides insights from an exploratory eye tracking study, in which visual routines during process model comprehension were contemplated. More specifically, n = 29 participants were asked to comprehend n = 18 process models expressed in the Business Process Model and Notation 2.0 reflecting diverse mappings (i.e., straight, upward, downward) and complexity levels. The performance measures indicated that even less complex process models pose a challenge regarding their comprehension. The upward mapping confronted participants' attention with more challenges, whereas the downward mapping was comprehended more effectively. Based on recorded eye movements, three gaze patterns applied during model comprehension were derived. Thereupon, we defined a general model which identifies visual routines and corresponding elemental operations during process model comprehension. Finally, implications for practice as well as research and directions for future work are discussed in this paper.

The study of accelerated gradient methods in Riemannian optimization has recently witnessed notable progress. However, in contrast with the Euclidean setting, a systematic understanding of acceleration is still lacking in the Riemannian setting. We revisit the \emph{Accelerated Hybrid Proximal Extragradient} (A-HPE) method of \citet{monteiro2013accelerated}, a powerful framework for obtaining accelerated Euclidean methods. Subsequently, we propose a Riemannian version of A-HPE. The basis of our analysis of Riemannian A-HPE is a set of insights into Euclidean A-HPE, which we combine with a careful control of distortion caused by Riemannian geometry. We describe a number of Riemannian accelerated gradient methods as concrete instances of our framework.

In this work we consider the problem of releasing a differentially private statistical summary that resides on a Riemannian manifold. We present an extension of the Laplace or K-norm mechanism that utilizes intrinsic distances and volumes on the manifold. We also consider in detail the specific case where the summary is the Fr\'echet mean of data residing on a manifold. We demonstrate that our mechanism is rate optimal and depends only on the dimension of the manifold, not on the dimension of any ambient space, while also showing how ignoring the manifold structure can decrease the utility of the sanitized summary. We illustrate our framework in two examples of particular interest in statistics: the space of symmetric positive definite matrices, which is used for covariance matrices, and the sphere, which can be used as a space for modeling discrete distributions.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司