This paper introduces EcoPull, a sustainable Internet of Things (IoT) framework empowered by tiny machine learning (TinyML) models for fetching images from wireless visual sensor networks. Two types of learnable TinyML models are installed in the IoT devices: i) a behavior model and ii) an image compressor model. The first filters out irrelevant images for the current task, reducing unnecessary transmission and resource competition among the devices. The second allows IoT devices to communicate with the receiver via latent representations of images, reducing communication bandwidth usage. However, integrating learnable modules into IoT devices comes at the cost of increased energy consumption due to inference. The numerical results show that the proposed framework can save > 70% energy compared to the baseline while maintaining the quality of the retrieved images at the ES.
We introduce Sequential Neural Posterior Score Estimation (SNPSE), a score-based method for Bayesian inference in simulator-based models. Our method, inspired by the remarkable success of score-based methods in generative modelling, leverages conditional score-based diffusion models to generate samples from the posterior distribution of interest. The model is trained using an objective function which directly estimates the score of the posterior. We embed the model into a sequential training procedure, which guides simulations using the current approximation of the posterior at the observation of interest, thereby reducing the simulation cost. We also introduce several alternative sequential approaches, and discuss their relative merits. We then validate our method, as well as its amortised, non-sequential, variant on several numerical examples, demonstrating comparable or superior performance to existing state-of-the-art methods such as Sequential Neural Posterior Estimation (SNPE).
Efficiently modeling spatio-temporal (ST) physical processes and observations presents a challenging problem for the deep learning community. Many recent studies have concentrated on meticulously reconciling various advantages, leading to designed models that are neither simple nor practical. To address this issue, this paper presents a systematic study on existing shortcomings faced by off-the-shelf models, including lack of local fidelity, poor prediction performance over long time-steps,low scalability, and inefficiency. To systematically address the aforementioned problems, we propose an EarthFarseer, a concise framework that combines parallel local convolutions and global Fourier-based transformer architectures, enabling dynamically capture the local-global spatial interactions and dependencies. EarthFarseer also incorporates a multi-scale fully convolutional and Fourier architectures to efficiently and effectively capture the temporal evolution. Our proposal demonstrates strong adaptability across various tasks and datasets, with fast convergence and better local fidelity in long time-steps predictions. Extensive experiments and visualizations over eight human society physical and natural physical datasets demonstrates the state-of-the-art performance of EarthFarseer. We release our code at //github.com/easylearningscores/EarthFarseer.
This paper introduces the retrieval-augmented large language model with Definite Finite Automaton (DFA-RAG), a novel framework designed to enhance the capabilities of conversational agents using large language models (LLMs). Traditional LLMs face challenges in generating regulated and compliant responses in special scenarios with predetermined response guidelines, like emotional support and customer service. Our framework addresses these challenges by embedding a Definite Finite Automaton (DFA), learned from training dialogues, within the LLM. This structured approach acts as a semantic router which enables the LLM to adhere to a deterministic response pathway. The routing is achieved by the retrieval-augmentation generation (RAG) strategy, which carefully selects dialogue examples aligned with the current conversational context. The advantages of DFA-RAG include an interpretable structure through human-readable DFA, context-aware retrieval for responses in conversations, and plug-and-play compatibility with existing LLMs. Extensive benchmarks validate DFA-RAG's effectiveness, indicating its potential as a valuable contribution to the conversational agent.
While spiking neural networks (SNNs) offer a promising neurally-inspired model of computation, they are vulnerable to adversarial attacks. We present the first study that draws inspiration from neural homeostasis to design a threshold-adapting leaky integrate-and-fire (TA-LIF) neuron model and utilize TA-LIF neurons to construct the adversarially robust homeostatic SNNs (HoSNNs) for improved robustness. The TA-LIF model incorporates a self-stabilizing dynamic thresholding mechanism, offering a local feedback control solution to the minimization of each neuron's membrane potential error caused by adversarial disturbance. Theoretical analysis demonstrates favorable dynamic properties of TA-LIF neurons in terms of the bounded-input bounded-output stability and suppressed time growth of membrane potential error, underscoring their superior robustness compared with the standard LIF neurons. When trained with weak FGSM attacks (attack budget = 2/255) and tested with much stronger PGD attacks (attack budget = 8/255), our HoSNNs significantly improve model accuracy on several datasets: from 30.54% to 74.91% on FashionMNIST, from 0.44% to 35.06% on SVHN, from 0.56% to 42.63% on CIFAR10, from 0.04% to 16.66% on CIFAR100, over the conventional LIF-based SNNs.
Decentralized federated learning (DFL) captures FL settings where both (i) model updates and (ii) model aggregations are exclusively carried out by the clients without a central server. Existing DFL works have mostly focused on settings where clients conduct a fixed number of local updates between local model exchanges, overlooking heterogeneity and dynamics in communication and computation capabilities. In this work, we propose Decentralized Sporadic Federated Learning (DSpodFL), a DFL methodology built on a generalized notion of sporadicity in both local gradient and aggregation processes. DSpodFL subsumes many existing decentralized optimization methods under a unified algorithmic framework by modeling the per-iteration (i) occurrence of gradient descent at each client and (ii) exchange of models between client pairs as arbitrary indicator random variables, thus capturing heterogeneous and time-varying computation/communication scenarios. We analytically characterize the convergence behavior of DSpodFL for both convex and non-convex models, for both constant and diminishing learning rates, under mild assumptions on the communication graph connectivity, data heterogeneity across clients, and gradient noises, and show how our bounds recover existing results as special cases. Experiments demonstrate that DSpodFL consistently achieves improved training speeds compared with baselines under various system settings.
Retrieval Augmented Generation (RAG) expands the capabilities of modern large language models (LLMs) in chatbot applications, enabling developers to adapt and personalize the LLM output without expensive training or fine-tuning. RAG systems use an external knowledge database to retrieve the most relevant documents for a given query, providing this context to the LLM generator. While RAG achieves impressive utility in many applications, its adoption to enable personalized generative models introduces new security risks. In this work, we propose new attack surfaces for an adversary to compromise a victim's RAG system, by injecting a single malicious document in its knowledge database. We design Phantom, general two-step attack framework against RAG augmented LLMs. The first step involves crafting a poisoned document designed to be retrieved by the RAG system within the top-k results only when an adversarial trigger, a specific sequence of words acting as backdoor, is present in the victim's queries. In the second step, a specially crafted adversarial string within the poisoned document triggers various adversarial attacks in the LLM generator, including denial of service, reputation damage, privacy violations, and harmful behaviors. We demonstrate our attacks on multiple LLM architectures, including Gemma, Vicuna, and Llama.
We introduce VividDream, a method for generating explorable 4D scenes with ambient dynamics from a single input image or text prompt. VividDream first expands an input image into a static 3D point cloud through iterative inpainting and geometry merging. An ensemble of animated videos is then generated using video diffusion models with quality refinement techniques and conditioned on renderings of the static 3D scene from the sampled camera trajectories. We then optimize a canonical 4D scene representation using an animated video ensemble, with per-video motion embeddings and visibility masks to mitigate inconsistencies. The resulting 4D scene enables free-view exploration of a 3D scene with plausible ambient scene dynamics. Experiments demonstrate that VividDream can provide human viewers with compelling 4D experiences generated based on diverse real images and text prompts.
One puzzling artifact in machine learning dubbed grokking is where delayed generalization is achieved tenfolds of iterations after near perfect overfitting to the training data. Focusing on the long delay itself on behalf of machine learning practitioners, our goal is to accelerate generalization of a model under grokking phenomenon. By regarding a series of gradients of a parameter over training iterations as a random signal over time, we can spectrally decompose the parameter trajectories under gradient descent into two components: the fast-varying, overfitting-yielding component and the slow-varying, generalization-inducing component. This analysis allows us to accelerate the grokking phenomenon more than $\times 50$ with only a few lines of code that amplifies the slow-varying components of gradients. The experiments show that our algorithm applies to diverse tasks involving images, languages, and graphs, enabling practical availability of this peculiar artifact of sudden generalization. Our code is available at \url{//github.com/ironjr/grokfast}.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.