亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the problem of estimating the order of arrival of the vertices in a random recursive tree. Specifically, we study two fundamental models: the uniform attachment model and the linear preferential attachment model. We propose an order estimator based on the Jordan centrality measure and define a family of risk measures to quantify the quality of the ordering procedure. Moreover, we establish a minimax lower bound for this problem, and prove that the proposed estimator is nearly optimal. Finally, we numerically demonstrate that the proposed estimator outperforms degree-based and spectral ordering procedures.

相關內容

In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue $\lambda$ and eigenfunction $u$ separately, we treat the eigenpair $(\lambda, u)$ as one element in a product space $\mathbb R \times H_0^1(\Omega)$. Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme.

In this paper, we first generalize the class of linear codes by Ding and Ding (IEEE TIT, 61(11), pp. 5835-5842, 2015). Then we mainly study the augmented codes of this generalized class of linear codes. For one thing, we use Gaussian sums to determine the parameters and weight distributions of the augmented codes in some cases. It is shown that the augmented codes are self-orthogonal and have only a few nonzero weights. For another thing, the locality of the augmented codes is proved to be 2, which indicates the augmented codes are useful in distributed storage. Besides, the augmented codes are projective as the minimum distance of their duals is proved to be 3. In particular, we obtain several (almost) optimal linear codes and locally recoverable codes.

In this paper, we develop two families of sequential monitoring procedure to (timely) detect changes in a GARCH(1,1) model. Whilst our methodologies can be applied for the general analysis of changepoints in GARCH(1,1) sequences, they are in particular designed to detect changes from stationarity to explosivity or vice versa, thus allowing to check for volatility bubbles. Our statistics can be applied irrespective of whether the historical sample is stationary or not, and indeed without prior knowledge of the regime of the observations before and after the break. In particular, we construct our detectors as the CUSUM process of the quasi-Fisher scores of the log likelihood function. In order to ensure timely detection, we then construct our boundary function (exceeding which would indicate a break) by including a weighting sequence which is designed to shorten the detection delay in the presence of a changepoint. We consider two types of weights: a lighter set of weights, which ensures timely detection in the presence of changes occurring early, but not too early after the end of the historical sample; and a heavier set of weights, called Renyi weights which is designed to ensure timely detection in the presence of changepoints occurring very early in the monitoring horizon. In both cases, we derive the limiting distribution of the detection delays, indicating the expected delay for each set of weights. Our theoretical results are validated via a comprehensive set of simulations, and an empirical application to daily returns of individual stocks.

In this work, a family of symmetric interpolation points are generated on the four-dimensional simplex (i.e. the pentatope). These points are optimized in order to minimize the Lebesgue constant. The process of generating these points closely follows that outlined by Warburton in "An explicit construction of interpolation nodes on the simplex," Journal of Engineering Mathematics, 2006. Here, Warburton generated optimal interpolation points on the triangle and tetrahedron by formulating explicit geometric warping and blending functions, and applying these functions to equidistant nodal distributions. The locations of the resulting points were Lebesgue-optimized. In our work, we extend this procedure to four dimensions, and construct interpolation points on the pentatope up to order ten. The Lebesgue constants of our nodal sets are calculated, and are shown to outperform those of equidistant nodal distributions.

We propose a notion of lift for quantum CSS codes, inspired by the geometrical construction of Freedman and Hastings. It is based on the existence of a canonical complex associated to any CSS code, that we introduce under the name of Tanner cone-complex, and over which we generate covering spaces. As a first application, we describe the classification of lifts of hypergraph product codes (HPC) and demonstrate the equivalence with the lifted product code (LPC) of Panteleev and Kalachev, including when the linear codes, factors of the HPC, are Tanner codes. As a second application, we report several new non-product constructions of quantum CSS codes, and we apply the prescription to generate their lifts which, for certain selected covering maps, are codes with improved relative parameters compared to the initial one.

Higher-dimensional automata, i.e., pointed labeled precubical sets, are a powerful combinatorial-topological model for concurrent systems. In this paper, we show that for every (nonempty) connected polyhedron there exists a shared-variable system such that the higher-dimensional automaton modeling the state space of the system has the homotopy type of the polyhedron.

We analyse abstract data types that model numerical structures with a concept of error. Specifically, we focus on arithmetic data types that contain an error value $\bot$ whose main purpose is to always return a value for division. To rings and fields, we add a division operator $x/y$ and study a class of algebras called common meadows wherein $x/0 = \bot$. The set of equations true in all common meadows is named the equational theory of common meadows. We give a finite equational axiomatisation of the equational theory of common meadows and prove that it is complete and that the equational theory is decidable.

Quantum Generative Adversarial Networks (qGANs) are at the forefront of image-generating quantum machine learning models. To accommodate the growing demand for Noisy Intermediate-Scale Quantum (NISQ) devices to train and infer quantum machine learning models, the number of third-party vendors offering quantum hardware as a service is expected to rise. This expansion introduces the risk of untrusted vendors potentially stealing proprietary information from the quantum machine learning models. To address this concern we propose a novel watermarking technique that exploits the noise signature embedded during the training phase of qGANs as a non-invasive watermark. The watermark is identifiable in the images generated by the qGAN allowing us to trace the specific quantum hardware used during training hence providing strong proof of ownership. To further enhance the security robustness, we propose the training of qGANs on a sequence of multiple quantum hardware, embedding a complex watermark comprising the noise signatures of all the training hardware that is difficult for adversaries to replicate. We also develop a machine learning classifier to extract this watermark robustly, thereby identifying the training hardware (or the suite of hardware) from the images generated by the qGAN validating the authenticity of the model. We note that the watermark signature is robust against inferencing on hardware different than the hardware that was used for training. We obtain watermark extraction accuracy of 100% and ~90% for training the qGAN on individual and multiple quantum hardware setups (and inferencing on different hardware), respectively. Since parameter evolution during training is strongly modulated by quantum noise, the proposed watermark can be extended to other quantum machine learning models as well.

The implication problem for conditional independence (CI) asks whether the fact that a probability distribution obeys a given finite set of CI relations implies that a further CI statement also holds in this distribution. This problem has a long and fascinating history, cumulating in positive results about implications now known as the semigraphoid axioms as well as impossibility results about a general finite characterization of CI implications. Motivated by violation of faithfulness assumptions in causal discovery, we study the implication problem in the special setting where the CI relations are obtained from a directed acyclic graphical (DAG) model along with one additional CI statement. Focusing on the Gaussian case, we give a complete characterization of when such an implication is graphical by using algebraic techniques. Moreover, prompted by the relevance of strong faithfulness in statistical guarantees for causal discovery algorithms, we give a graphical solution for an approximate CI implication problem, in which we ask whether small values of one additional partial correlation entail small values for yet a further partial correlation.

Replication studies are increasingly conducted to assess the credibility of scientific findings. Most of these replication attempts target studies with a superiority design, but there is a lack of methodology regarding the analysis of replication studies with alternative types of designs, such as equivalence. In order to fill this gap, we propose two approaches, the two-trials rule and the sceptical TOST procedure, adapted from methods used in superiority settings. Both methods have the same overall Type-I error rate, but the sceptical TOST procedure allows replication success even for non-significant original or replication studies. This leads to a larger project power and other differences in relevant operating characteristics. Both methods can be used for sample size calculation of the replication study, based on the results from the original one. The two methods are applied to data from the Reproducibility Project: Cancer Biology.

北京阿比特科技有限公司