亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the optimal memorization capacity of modern Hopfield models and Kernelized Hopfield Models (KHMs), a transformer-compatible class of Dense Associative Memories. We present a tight analysis by establishing a connection between the memory configuration of KHMs and spherical codes from information theory. Specifically, we treat the stored memory set as a specialized spherical code. This enables us to cast the memorization problem in KHMs into a point arrangement problem on a hypersphere. We show that the optimal capacity of KHMs occurs when the feature space allows memories to form an optimal spherical code. This unique perspective leads to: (i) An analysis of how KHMs achieve optimal memory capacity, and identify corresponding necessary conditions. Importantly, we establish an upper capacity bound that matches the well-known exponential lower bound in the literature. This provides the first tight and optimal asymptotic memory capacity for modern Hopfield models. (ii) A sub-linear time algorithm $\mathtt{U}\text{-}\mathtt{Hop}$+ to reach KHMs' optimal capacity. (iii) An analysis of the scaling behavior of the required feature dimension relative to the number of stored memories. These efforts improve both the retrieval capability of KHMs and the representation learning of corresponding transformers. Experimentally, we provide thorough numerical results to back up theoretical findings.

相關內容

We study the Out-of-Distribution (OOD) generalization in machine learning and propose a general framework that establishes information-theoretic generalization bounds. Our framework interpolates freely between Integral Probability Metric (IPM) and $f$-divergence, which naturally recovers some known results (including Wasserstein- and KL-bounds), as well as yields new generalization bounds. Additionally, we show that our framework admits an optimal transport interpretation. When evaluated in two concrete examples, the proposed bounds either strictly improve upon existing bounds in some cases or match the best existing OOD generalization bounds. Moreover, by focusing on $f$-divergence and combining it with the Conditional Mutual Information (CMI) methods, we derive a family of CMI-based generalization bounds, which include the state-of-the-art ICIMI bound as a special instance. Finally, leveraging these findings, we analyze the generalization of the Stochastic Gradient Langevin Dynamics (SGLD) algorithm, showing that our derived generalization bounds outperform existing information-theoretic generalization bounds in certain scenarios.

Unmanned Aerial Vehicles (UAVs) possess high mobility and flexible deployment capabilities, prompting the development of UAVs for various application scenarios within the Internet of Things (IoT). The unique capabilities of UAVs give rise to increasingly critical and complex tasks in uncertain and potentially harsh environments. The substantial amount of data generated from these applications necessitates processing and analysis through deep neural networks (DNNs). However, UAVs encounter challenges due to their limited computing resources when managing DNN models. This paper presents a joint approach that combines multiple-agent reinforcement learning (MARL) and generative diffusion models (GDM) for assigning DNN tasks to a UAV swarm, aimed at reducing latency from task capture to result output. To address these challenges, we first consider the task size of the target area to be inspected and the shortest flying path as optimization constraints, employing a greedy algorithm to resolve the subproblem with a focus on minimizing the UAV's flying path and the overall system cost. In the second stage, we introduce a novel DNN task assignment algorithm, termed GDM-MADDPG, which utilizes the reverse denoising process of GDM to replace the actor network in multi-agent deep deterministic policy gradient (MADDPG). This approach generates specific DNN task assignment actions based on agents' observations in a dynamic environment. Simulation results indicate that our algorithm performs favorably compared to benchmarks in terms of path planning, Age of Information (AoI), energy consumption, and task load balancing.

We introduce the Coarse Payoff-Assessment Learning (CPAL) model, which captures reinforcement learning by boundedly rational decision-makers who focus on the aggregate outcomes of choosing among exogenously defined clusters of alternatives (similarity classes), rather than evaluating each alternative individually. Analyzing a smooth approximation of the model, we show that the learning dynamics exhibit steady-states corresponding to smooth Valuation Equilibria (Jehiel and Samet, 2007). We demonstrate the existence of multiple equilibria in decision trees with generic payoffs and establish the local asymptotic stability of pure equilibria when they occur. Conversely, when trivial choices featuring alternatives within the same similarity class yield sufficiently high payoffs, a unique mixed equilibrium emerges, characterized by indifferences between similarity classes, even under acute sensitivity to payoff differences. Finally, we prove that this unique mixed equilibrium is globally asymptotically stable under the CPAL dynamics.

This work proposes a hybrid model- and data-based scheme for fault detection, isolation, and estimation (FDIE) for a class of wafer handler (WH) robots. The proposed hybrid scheme consists of: 1) a linear filter that simultaneously estimates system states and fault-induced signals from sensing and actuation data; and 2) a data-driven classifier, in the form of a support vector machine (SVM), that detects and isolates the fault type using estimates generated by the filter. We demonstrate the effectiveness of the scheme for two critical fault types for WH robots used in the semiconductor industry: broken-belt in the lower arm of the WH robot (an abrupt fault) and tilt in the robot arms (an incipient fault). We derive explicit models of the robot motion dynamics induced by these faults and test the diagnostics scheme in a realistic simulation-based case study. These case study results demonstrate that the proposed hybrid FDIE scheme achieves superior performance compared to purely data-driven methods.

Sparse Matrix-Matrix Multiplication (SpMM) is a fundamental operation in graph computing and analytics. However, the irregularity of real-world graphs poses significant challenges to achieving efficient SpMM operation for graph data on GPUs. Recently, significant advancements in GPU computing power and the introduction of new efficient computing cores within GPUs offer new opportunities for acceleration. In this paper, we present HC-SpMM, a pioneering algorithm that leverages hybrid GPU cores (Tensor cores and CUDA cores) to accelerate SpMM for graphs. To adapt to the computing characteristics of different GPU cores, we investigate the impact of sparse graph features on the performance of different cores, develop a data partitioning technique for the graph adjacency matrix, and devise a novel strategy for intelligently selecting the most efficient cores for processing each submatrix. Additionally, we optimize it by considering memory access and thread utilization, to utilize the computational resources to their fullest potential. To support complex graph computing workloads, we integrate HC-SpMM into the GNN training pipeline. Furthermore, we propose a kernel fusion strategy to enhance data reuse, as well as a cost-effective graph layout reorganization method to mitigate the irregular and sparse issues of real-world graphs, better fitting the computational models of hybrid GPU cores. Extensive experiments on 14 real-world graph datasets demonstrate that HC-SpMM achieves an average speedup of 1.33x and 1.23x over state-of-the-art SpMM kernels and GNN frameworks.

We study the probability tail properties of Inverse Probability Weighting (IPW) estimators of the Average Treatment Effect (ATE) when there is limited overlap between the covariate distributions of the treatment and control groups. Under unconfoundedness of treatment assignment conditional on covariates, such limited overlap is manifested in the propensity score for certain units being very close (but not equal) to 0 or 1. This renders IPW estimators possibly heavy tailed, and with a slower than sqrt(n) rate of convergence. Trimming or truncation is ultimately based on the covariates, ignoring important information about the inverse probability weighted random variable Z that identifies ATE by E[Z]= ATE. We propose a tail-trimmed IPW estimator whose performance is robust to limited overlap. In terms of the propensity score, which is generally unknown, we plug-in its parametric estimator in the infeasible Z, and then negligibly trim the resulting feasible Z adaptively by its large values. Trimming leads to bias if Z has an asymmetric distribution and an infinite variance, hence we estimate and remove the bias using important improvements on existing theory and methods. Our estimator sidesteps dimensionality, bias and poor correspondence properties associated with trimming by the covariates or propensity score. Monte Carlo experiments demonstrate that trimming by the covariates or the propensity score requires the removal of a substantial portion of the sample to render a low bias and close to normal estimator, while our estimator has low bias and mean-squared error, and is close to normal, based on the removal of very few sample extremes.

Despite the efficiency of prompt learning in transferring vision-language models (VLMs) to downstream tasks, existing methods mainly learn the prompts in a coarse-grained manner where the learned prompt vectors are shared across all categories. Consequently, the tailored prompts often fail to discern class-specific visual concepts, thereby hindering the transferred performance for classes that share similar or complex visual attributes. Recent advances mitigate this challenge by leveraging external knowledge from Large Language Models (LLMs) to furnish class descriptions, yet incurring notable inference costs. In this paper, we introduce TextRefiner, a plug-and-play method to refine the text prompts of existing methods by leveraging the internal knowledge of VLMs. Particularly, TextRefiner builds a novel local cache module to encapsulate fine-grained visual concepts derivedfrom local tokens within the image branch. By aggregating and aligning the cached visual descriptions with the original output of the text branch, TextRefiner can efficiently refine and enrich the learned prompts from existing methods without relying on any external expertise. For example, it improves the performance of CoOp from 71.66 % to 76.94 % on 11 benchmarks, surpassing CoCoOp which introduces instance-wise features for text prompts. Equipped with TextRefiner, PromptKD achieves state-of-the-art performance and is efficient in inference. Our code is relesed at //github.com/xjjxmu/TextRefiner

This paper describes two C++/Open Motion Planning Library implementations of the recently developed motion planning algorithms HyRRT arXiv:2210.15082v1 [cs.RO] and HySST arXiv:2305.18649v1 [cs.RO]. Specifically, cHyRRT, an implementation of the HyRRT algorithm, is capable of generating a solution to a motion planning problem for hybrid systems with probabilistically completeness, while cHySST, an implementation of the asymptotically near-optimal HySST algorithm, is capable of computing a trajectory to solve the optimal motion planning problem for hybrid systems. cHyRRT is suitable for motion planning problems where an optimal solution is not required, whereas cHySST is suitable for such problems that prefer optimal solutions, within all feasible solutions. The structure, components, and usage of the two tools are described. Examples are included to illustrate the main capabilities of the toolbox.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.

北京阿比特科技有限公司