亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Skeleton-based action recognition is widely used in varied areas, e.g., surveillance and human-machine interaction. Existing models are mainly learned in a supervised manner, thus heavily depending on large-scale labeled data which could be infeasible when labels are prohibitively expensive. In this paper, we propose a novel Contrast-Reconstruction Representation Learning network (CRRL) that simultaneously captures postures and motion dynamics for unsupervised skeleton-based action recognition. It mainly consists of three parts: Sequence Reconstructor, Contrastive Motion Learner, and Information Fuser. The Sequence Reconstructor learns representation from skeleton coordinate sequence via reconstruction, thus the learned representation tends to focus on trivial postural coordinates and be hesitant in motion learning. To enhance the learning of motions, the Contrastive Motion Learner performs contrastive learning between the representations learned from coordinate sequence and additional velocity sequence, respectively. Finally, in the Information Fuser, we explore varied strategies to combine the Sequence Reconstructor and Contrastive Motion Learner, and propose to capture postures and motions simultaneously via a knowledge-distillation based fusion strategy that transfers the motion learning from the Contrastive Motion Learner to the Sequence Reconstructor. Experimental results on several benchmarks, i.e., NTU RGB+D 60, NTU RGB+D 120, CMU mocap, and NW-UCLA, demonstrate the promise of the proposed CRRL method by far outperforming state-of-the-art approaches.

相關內容

Image reconstruction for positron emission tomography (PET) is challenging because of the ill-conditioned tomographic problem and low counting statistics. Kernel methods address this challenge by using kernel representation to incorporate image prior information in the forward model of iterative PET image reconstruction. Existing kernel methods construct the kernels commonly using an empirical process, which may lead to suboptimal performance. In this paper, we describe the equivalence between the kernel representation and a trainable neural network model. A deep kernel method is then proposed by exploiting a deep neural network to enable automated learning of an optimized kernel model and is directly applicable to single subjects. The training process utilizes available image prior data to seek the best way to form a set of robust kernels optimally rather than empirically. The results from computer simulations and a real patient dataset demonstrate that the proposed deep kernel method can outperform the existing kernel method and neural network method for dynamic PET image reconstruction.

We present ShapeFormer, a transformer-based network that produces a distribution of object completions, conditioned on incomplete, and possibly noisy, point clouds. The resultant distribution can then be sampled to generate likely completions, each exhibiting plausible shape details while being faithful to the input. To facilitate the use of transformers for 3D, we introduce a compact 3D representation, vector quantized deep implicit function, that utilizes spatial sparsity to represent a close approximation of a 3D shape by a short sequence of discrete variables. Experiments demonstrate that ShapeFormer outperforms prior art for shape completion from ambiguous partial inputs in terms of both completion quality and diversity. We also show that our approach effectively handles a variety of shape types, incomplete patterns, and real-world scans.

We present a method for reconstructing accurate and consistent 3D hands from a monocular video. We observe that detected 2D hand keypoints and the image texture provide important cues about the geometry and texture of the 3D hand, which can reduce or even eliminate the requirement on 3D hand annotation. Thus we propose ${\rm {S}^{2}HAND}$, a self-supervised 3D hand reconstruction model, that can jointly estimate pose, shape, texture, and the camera viewpoint from a single RGB input through the supervision of easily accessible 2D detected keypoints. We leverage the continuous hand motion information contained in the unlabeled video data and propose ${\rm {S}^{2}HAND(V)}$, which uses a set of weights shared ${\rm {S}^{2}HAND}$ to process each frame and exploits additional motion, texture, and shape consistency constrains to promote more accurate hand poses and more consistent shapes and textures. Experiments on benchmark datasets demonstrate that our self-supervised approach produces comparable hand reconstruction performance compared with the recent full-supervised methods in single-frame as input setup, and notably improves the reconstruction accuracy and consistency when using video training data.

Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at //github.com/Katou2/CSTP.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Transformer has been widely used for self-supervised pre-training in Natural Language Processing (NLP) and achieved great success. However, it has not been fully explored in visual self-supervised learning. Meanwhile, previous methods only consider the high-level feature and learning representation from a global perspective, which may fail to transfer to the downstream dense prediction tasks focusing on local features. In this paper, we present a novel Masked Self-supervised Transformer approach named MST, which can explicitly capture the local context of an image while preserving the global semantic information. Specifically, inspired by the Masked Language Modeling (MLM) in NLP, we propose a masked token strategy based on the multi-head self-attention map, which dynamically masks some tokens of local patches without damaging the crucial structure for self-supervised learning. More importantly, the masked tokens together with the remaining tokens are further recovered by a global image decoder, which preserves the spatial information of the image and is more friendly to the downstream dense prediction tasks. The experiments on multiple datasets demonstrate the effectiveness and generality of the proposed method. For instance, MST achieves Top-1 accuracy of 76.9% with DeiT-S only using 300-epoch pre-training by linear evaluation, which outperforms supervised methods with the same epoch by 0.4% and its comparable variant DINO by 1.0\%. For dense prediction tasks, MST also achieves 42.7% mAP on MS COCO object detection and 74.04% mIoU on Cityscapes segmentation only with 100-epoch pre-training.

Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.

This paper aims at learning representations for long sequences of continuous signals. Recently, the BERT model has demonstrated the effectiveness of stacked transformers for representing sequences of discrete signals (i.e. word tokens). Inspired by its success, we adopt the stacked transformer architecture, but generalize its training objective to maximize the mutual information between the masked signals, and the bidirectional context, via contrastive loss. This enables the model to handle continuous signals, such as visual features. We further consider the case when there are multiple sequences that are semantically aligned at the sequence-level but not at the element-level (e.g. video and ASR), where we propose to use a Transformer to estimate the mutual information between the two sequences, which is again maximized via contrastive loss. We demonstrate the effectiveness of the learned representations on modeling long video sequences for action anticipation and video captioning. The results show that our method, referred to by Contrastive Bidirectional Transformer ({\bf CBT}), outperforms various baselines significantly. Furthermore, we improve over the state of the art.

Skeleton-based action recognition is an important task that requires the adequate understanding of movement characteristics of a human action from the given skeleton sequence. Recent studies have shown that exploring spatial and temporal features of the skeleton sequence is vital for this task. Nevertheless, how to effectively extract discriminative spatial and temporal features is still a challenging problem. In this paper, we propose a novel Attention Enhanced Graph Convolutional LSTM Network (AGC-LSTM) for human action recognition from skeleton data. The proposed AGC-LSTM can not only capture discriminative features in spatial configuration and temporal dynamics but also explore the co-occurrence relationship between spatial and temporal domains. We also present a temporal hierarchical architecture to increases temporal receptive fields of the top AGC-LSTM layer, which boosts the ability to learn the high-level semantic representation and significantly reduces the computation cost. Furthermore, to select discriminative spatial information, the attention mechanism is employed to enhance information of key joints in each AGC-LSTM layer. Experimental results on two datasets are provided: NTU RGB+D dataset and Northwestern-UCLA dataset. The comparison results demonstrate the effectiveness of our approach and show that our approach outperforms the state-of-the-art methods on both datasets.

We propose Human Pose Models that represent RGB and depth images of human poses independent of clothing textures, backgrounds, lighting conditions, body shapes and camera viewpoints. Learning such universal models requires training images where all factors are varied for every human pose. Capturing such data is prohibitively expensive. Therefore, we develop a framework for synthesizing the training data. First, we learn representative human poses from a large corpus of real motion captured human skeleton data. Next, we fit synthetic 3D humans with different body shapes to each pose and render each from 180 camera viewpoints while randomly varying the clothing textures, background and lighting. Generative Adversarial Networks are employed to minimize the gap between synthetic and real image distributions. CNN models are then learned that transfer human poses to a shared high-level invariant space. The learned CNN models are then used as invariant feature extractors from real RGB and depth frames of human action videos and the temporal variations are modelled by Fourier Temporal Pyramid. Finally, linear SVM is used for classification. Experiments on three benchmark cross-view human action datasets show that our algorithm outperforms existing methods by significant margins for RGB only and RGB-D action recognition.

北京阿比特科技有限公司