Collision detection between objects is critical for simulation, control, and learning for robotic systems. However, existing collision detection routines are inherently non-differentiable, limiting their applications in gradient-based optimization tools. In this work, we propose DCOL: a fast and fully differentiable collision-detection framework that reasons about collisions between a set of composable and highly expressive convex primitive shapes. This is achieved by formulating the collision detection problem as a convex optimization problem that solves for the minimum uniform scaling applied to each primitive before they intersect. The optimization problem is fully differentiable with respect to the configurations of each primitive and is able to return a collision detection metric and contact points on each object, agnostic of interpenetration. We demonstrate the capabilities of DCOL on a range of robotics problems from trajectory optimization and contact physics, and have made an open-source implementation available.
In this work, we present a method for synthetic CT (sCT) generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. We propose a loss function that favors a spatially sparse region in the image. We harness the ability of a multi-task network to produce correlated outputs as a framework to enable localisation of region of interest (RoI) via classification, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task. We demonstrate how the multi-task network with RoI focused loss offers an advantage over other configurations of the network to achieve higher accuracy of performance. This is relevant to sCT where failure to accurately estimate high Hounsfield Unit values of bone could lead to impaired accuracy in clinical applications. We compare the dose calculation maps from the proposed sCT and the real CT in a radiation therapy treatment planning setup.
Empirical detection of long range dependence (LRD) of a time series often consists of deciding whether an estimate of the memory parameter $d$ corresponds to LRD. Surprisingly, the literature offers numerous spectral domain estimators for $d$ but there are only a few estimators in the time domain. Moreover, the latter estimators are criticized for relying on visual inspection to determine an observation window $[n_1, n_2]$ for a linear regression to run on. Theoretically motivated choices of $n_1$ and $n_2$ are often missing for many time series models. In this paper, we take the well-known variance plot estimator and provide rigorous asymptotic conditions on $[n_1, n_2]$ to ensure the estimator's consistency under LRD. We establish these conditions for a large class of square-integrable time series models. This large class enables one to use the variance plot estimator to detect LRD for infinite-variance time series (after suitable transformation). Thus, detection of LRD for infinite-variance time series is another novelty of our paper. A simulation study indicates that the variance plot estimator can detect LRD better than the popular spectral domain GPH estimator.
We consider a high-dimensional random constrained optimization problem in which a set of binary variables is subjected to a linear system of equations. The cost function is a simple linear cost, measuring the Hamming distance with respect to a reference configuration. Despite its apparent simplicity, this problem exhibits a rich phenomenology. We show that different situations arise depending on the random ensemble of linear systems. When each variable is involved in at most two linear constraints, we show that the problem can be partially solved analytically, in particular we show that upon convergence, the zero-temperature limit of the cavity equations returns the optimal solution. We then study the geometrical properties of more general random ensembles. In particular we observe a range in the density of constraints at which the systems enters a glassy phase where the cost function has many minima. Interestingly, the algorithmic performances are only sensitive to another phase transition affecting the structure of configurations allowed by the linear constraints. We also extend our results to variables belonging to $\text{GF}(q)$, the Galois Field of order $q$. We show that increasing the value of $q$ allows to achieve a better optimum, which is confirmed by the Replica Symmetric cavity method predictions.
This chapter discusses the intricacies of cybersecurity agents' perception. It addresses the complexity of perception and illuminates how perception shapes and influences the decision-making process. It then explores the necessary considerations when crafting the world representation and discusses the power and bandwidth constraints of perception and the underlying issues of AICA's trust in perception. On these foundations, it provides the reader with a guide to developing perception models for AICA, discussing the trade-offs of each objective state approximation. The guide is written in the context of the CYST cybersecurity simulation engine, which aims to closely model cybersecurity interactions and can be used as a basis for developing AICA. Because CYST is freely available, the reader is welcome to try implementing and evaluating the proposed methods for themselves.
Motion planning and control are crucial components of robotics applications. Here, spatio-temporal hard constraints like system dynamics and safety boundaries (e.g., obstacles in automated driving) restrict the robot's motions. Direct methods from optimal control solve a constrained optimization problem. However, in many applications finding a proper cost function is inherently difficult because of the weighting of partially conflicting objectives. On the other hand, Imitation Learning (IL) methods such as Behavior Cloning (BC) provide a intuitive framework for learning decision-making from offline demonstrations and constitute a promising avenue for planning and control in complex robot applications. Prior work primarily relied on soft-constraint approaches, which use additional auxiliary loss terms describing the constraints. However, catastrophic safety-critical failures might occur in out-of-distribution (OOD) scenarios. This work integrates the flexibility of IL with hard constraint handling in optimal control. Our approach constitutes a general framework for constraint robotic motion planning and control using offline IL. Hard constraints are integrated into the learning problem in a differentiable manner, via explicit completion and gradient-based correction. Simulated experiments of mobile robot navigation and automated driving provide evidence for the performance of the proposed method.
Today, an increasing number of Adaptive Deep Neural Networks (AdNNs) are being used on resource-constrained embedded devices. We observe that, similar to traditional software, redundant computation exists in AdNNs, resulting in considerable performance degradation. The performance degradation is dependent on the input and is referred to as input-dependent performance bottlenecks (IDPBs). To ensure an AdNN satisfies the performance requirements of resource-constrained applications, it is essential to conduct performance testing to detect IDPBs in the AdNN. Existing neural network testing methods are primarily concerned with correctness testing, which does not involve performance testing. To fill this gap, we propose DeepPerform, a scalable approach to generate test samples to detect the IDPBs in AdNNs. We first demonstrate how the problem of generating performance test samples detecting IDPBs can be formulated as an optimization problem. Following that, we demonstrate how DeepPerform efficiently handles the optimization problem by learning and estimating the distribution of AdNNs' computational consumption. We evaluate DeepPerform on three widely used datasets against five popular AdNN models. The results show that DeepPerform generates test samples that cause more severe performance degradation (FLOPs: increase up to 552\%). Furthermore, DeepPerform is substantially more efficient than the baseline methods in generating test inputs(runtime overhead: only 6-10 milliseconds).
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.