亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Information from various data sources is increasingly available nowadays. However, some of the data sources may produce biased estimation due to commonly encountered biased sampling, population heterogeneity, or model misspecification. This calls for statistical methods to combine information in the presence of biased sources. In this paper, a robust data fusion-extraction method is proposed. The method can produce a consistent estimator of the parameter of interest even if many of the data sources are biased. The proposed estimator is easy to compute and only employs summary statistics, and hence can be applied to many different fields, e.g. meta-analysis, Mendelian randomisation and distributed system. Moreover, the proposed estimator is asymptotically equivalent to the oracle estimator that only uses data from unbiased sources under some mild conditions. Asymptotic normality of the proposed estimator is also established. In contrast to the existing meta-analysis methods, the theoretical properties are guaranteed even if both the number of data sources and the dimension of the parameter diverge as the sample size increases, which ensures the performance of the proposed method over a wide range. The robustness and oracle property is also evaluated via simulation studies. The proposed method is applied to a meta-analysis data set to evaluate the surgical treatment for the moderate periodontal disease, and a Mendelian randomization data set to study the risk factors of head and neck cancer.

相關內容

Spatial statistics is concerned with the analysis of data that have spatial locations associated with them, and those locations are used to model statistical dependence between the data. The spatial data are treated as a single realisation from a probability model that encodes the dependence through both fixed effects and random effects, where randomness is manifest in the underlying spatial process and in the noisy, incomplete, measurement process. The focus of this review article is on the use of basis functions to provide an extremely flexible and computationally efficient way to model spatial processes that are possibly highly non-stationary. Several examples of basis-function models are provided to illustrate how they are used in Gaussian, non-Gaussian, multivariate, and spatio-temporal settings, with applications in geophysics. Our aim is to emphasise the versatility of these spatial statistical models and to demonstrate that they are now centre-stage in a number of application domains. The review concludes with a discussion and illustration of software currently available to fit spatial-basis-function models and implement spatial-statistical prediction.

The vast majority of literature on evaluating the significance of a treatment effect based on observational data has been confined to discrete treatments. These methods are not applicable to drawing inference for a continuous treatment, which arises in many important applications. To adjust for confounders when evaluating a continuous treatment, existing inference methods often rely on discretizing the treatment or using (possibly misspecified) parametric models for the effect curve. Recently, Kennedy et al. (2017) proposed nonparametric doubly robust estimation for a continuous treatment effect in observational studies. However, inference for the continuous treatment effect is a significantly harder problem. To the best of our knowledge, a completely nonparametric doubly robust approach for inference in this setting is not yet available. We develop such a nonparametric doubly robust procedure in this paper for making inference on the continuous treatment effect curve. Using empirical process techniques for local U- and V-processes, we establish the test statistic's asymptotic distribution. Furthermore, we propose a wild bootstrap procedure for implementing the test in practice. We illustrate the new method via simulations and a study of a constructed dataset relating the effect of nurse staffing hours on hospital performance. We implement and share code for our doubly robust dose response test in the R package DRDRtest on CRAN.

Doubly robust causal inference has a well-established basis in frequentist semi-parametric theory, with estimation of causal parameters typically conducted via outcome regression and propensity score adjustment. A Bayesian counterpart, however, is not obvious as doubly robust estimation involves a semi-parametric formulation in the absence of a fully specified likelihood function. In this paper, we propose a Bayesian approach for doubly robust causal inference via two general Bayesian updating approaches based on loss functions. First, we specify a loss function for a doubly robust propensity score augmented outcome regression model and apply the traditional Bayesian updating mechanism which uses a prior belief distribution to calculate the posterior. Secondly, we draw inference for the posterior from a Bayesian predictive distribution via a Dirichlet process model, extending the Bayesian bootstrap. We show that these updating procedures yield valid posterior distributions of parameters which exhibit double robustness. Simulation studies show that the proposed methods can recover the true causal effect efficiently and achieve frequentist coverage even when the sample size is small or if the propensity score distribution is highly skewed. Finally, we apply our methods to evaluate the causal impact of speed cameras on traffic collisions in England.

Causal inference has been increasingly reliant on observational studies with rich covariate information. To build tractable causal procedures, such as the doubly robust estimators, it is imperative to first extract important features from high or even ultra-high dimensional data. In this paper, we propose causal ball screening for confounder selection from modern ultra-high dimensional data sets. Unlike the familiar task of variable selection for prediction modeling, our confounder selection procedure aims to control for confounding while improving efficiency in the resulting causal effect estimate. Previous empirical and theoretical studies suggest excluding causes of the treatment that are not confounders. Motivated by these results, our goal is to keep all the predictors of the outcome in both the propensity score and outcome regression models. A distinctive feature of our proposal is that we use an outcome model-free procedure for propensity score model selection, thereby maintaining double robustness in the resulting causal effect estimator. Our theoretical analyses show that the proposed procedure enjoys a number of properties, including model selection consistency and point-wise normality. Synthetic and real data analysis show that our proposal performs favorably with existing methods in a range of realistic settings. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

Models defined by moment conditions are at the center of structural econometric estimation, but economic theory is mostly agnostic about moment selection. While a large pool of valid moments can potentially improve estimation efficiency, in the meantime a few invalid ones may undermine consistency. This paper investigates the empirical likelihood estimation of these moment-defined models in high-dimensional settings. We propose a penalized empirical likelihood (PEL) estimation and establish its oracle property with consistent detection of invalid moments. The PEL estimator is asymptotically normally distributed, and a projected PEL procedure further eliminates its asymptotic bias and provides more accurate normal approximation to the finite sample behavior. Simulation exercises demonstrate excellent numerical performance of these methods in estimation and inference.

We present methods for causally interpretable meta-analyses that combine information from multiple randomized trials to estimate potential (counterfactual) outcome means and average treatment effects in a target population. We consider identifiability conditions, derive implications of the conditions for the law of the observed data, and obtain identification results for transporting causal inferences from a collection of independent randomized trials to a new target population in which experimental data may not be available. We propose an estimator for the potential (counterfactual) outcome mean in the target population under each treatment studied in the trials. The estimator uses covariate, treatment, and outcome data from the collection of trials, but only covariate data from the target population sample. We show that it is doubly robust, in the sense that it is consistent and asymptotically normal when at least one of the models it relies on is correctly specified. We study the finite sample properties of the estimator in simulation studies and demonstrate its implementation using data from a multi-center randomized trial.

We propose a method to distinguish causal influence from hidden confounding in the following scenario: given a target variable Y, potential causal drivers X, and a large number of background features, we propose a novel criterion for identifying causal relationship based on the stability of regression coefficients of X on Y with respect to selecting different background features. To this end, we propose a statistic V measuring the coefficient's variability. We prove, subject to a symmetry assumption for the background influence, that V converges to zero if and only if X contains no causal drivers. In experiments with simulated data, the method outperforms state of the art algorithms. Further, we report encouraging results for real-world data. Our approach aligns with the general belief that causal insights admit better generalization of statistical associations across environments, and justifies similar existing heuristic approaches from the literature.

We introduce a methodology for robust Bayesian estimation with robust divergence (e.g., density power divergence or {\gamma}-divergence), indexed by a single tuning parameter. It is well known that the posterior density induced by robust divergence gives highly robust estimators against outliers if the tuning parameter is appropriately and carefully chosen. In a Bayesian framework, one way to find the optimal tuning parameter would be using evidence (marginal likelihood). However, we numerically illustrate that evidence induced by the density power divergence does not work to select the optimal tuning parameter since robust divergence is not regarded as a statistical model. To overcome the problems, we treat the exponential of robust divergence as an unnormalized statistical model, and we estimate the tuning parameter via minimizing the Hyvarinen score. We also provide adaptive computational methods based on sequential Monte Carlo (SMC) samplers, which enables us to obtain the optimal tuning parameter and samples from posterior distributions simultaneously. The empirical performance of the proposed method through simulations and an application to real data are also provided.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司