亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that provides both high-level programming and high-performance. The Julia programming language, developed at MIT especially to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the Julia language for HEP research is explored, covering the different aspects that are important for HEP code development: runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of programming. The study shows that the HEP community would benefit from a large scale adoption of this programming language. The HEP-specific foundation libraries that would need to be consolidated are identified

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Detection of easily missed hidden patterns with fast processing power makes machine learning (ML) indispensable to today's healthcare system. Though many ML applications have already been discovered and many are still under investigation, only a few have been adopted by current healthcare systems. As a result, there exists an enormous opportunity in healthcare system for ML but distributed information, scarcity of properly arranged and easily explainable documentation in related sector are major impede which are making ML applications difficult to healthcare professionals. This study aimed to gather ML applications in different areas of healthcare concisely and more effectively so that necessary information can be accessed immediately with relevant references. We divided our study into five major groups: community level work, risk management/ preventive care, healthcare operation management, remote care, and early detection. Dividing these groups into subgroups, we provided relevant references with description in tabular form for quick access. Our objective is to inform people about ML applicability in healthcare industry, reduce the knowledge gap of clinicians about the ML applications and motivate healthcare professionals towards more machine learning based healthcare system.

Following their success in visual recognition tasks, Vision Transformers(ViTs) are being increasingly employed for image restoration. As a few recent works claim that ViTs for image classification also have better robustness properties, we investigate whether the improved adversarial robustness of ViTs extends to image restoration. We consider the recently proposed Restormer model, as well as NAFNet and the "Baseline network" which are both simplified versions of a Restormer. We use Projected Gradient Descent (PGD) and CosPGD, a recently proposed adversarial attack tailored to pixel-wise prediction tasks for our robustness evaluation. Our experiments are performed on real-world images from the GoPro dataset for image deblurring. Our analysis indicates that contrary to as advocated by ViTs in image classification works, these models are highly susceptible to adversarial attacks. We attempt to improve their robustness through adversarial training. While this yields a significant increase in robustness for Restormer, results on other networks are less promising. Interestingly, the design choices in NAFNet and Baselines, which were based on iid performance, and not on robust generalization, seem to be at odds with the model robustness. Thus, we investigate this further and find a fix.

The accelerated adoption of digital pathology and advances in deep learning have enabled the development of powerful models for various pathology tasks across a diverse array of diseases and patient cohorts. However, model training is often difficult due to label scarcity in the medical domain and the model's usage is limited by the specific task and disease for which it is trained. Additionally, most models in histopathology leverage only image data, a stark contrast to how humans teach each other and reason about histopathologic entities. We introduce CONtrastive learning from Captions for Histopathology (CONCH), a visual-language foundation model developed using diverse sources of histopathology images, biomedical text, and notably over 1.17 million image-caption pairs via task-agnostic pretraining. Evaluated on a suite of 13 diverse benchmarks, CONCH can be transferred to a wide range of downstream tasks involving either or both histopathology images and text, achieving state-of-the-art performance on histology image classification, segmentation, captioning, text-to-image and image-to-text retrieval. CONCH represents a substantial leap over concurrent visual-language pretrained systems for histopathology, with the potential to directly facilitate a wide array of machine learning-based workflows requiring minimal or no further supervised fine-tuning.

Hand gestures are a form of non-verbal communication that is used in social interaction and it is therefore required for more natural human-robot interaction. Neuromorphic (brain-inspired) computing offers a low-power solution for Spiking neural networks (SNNs) that can be used for the classification and recognition of gestures. This article introduces the preliminary results of a novel methodology for training spiking convolutional neural networks for hand-gesture recognition so that a humanoid robot with integrated neuromorphic hardware will be able to personalise the interaction with a user according to the shown hand gesture. It also describes other approaches that could improve the overall performance of the model.

Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.

This paper presents a study on the feasibility of using large language models (LLM) for coding with low-resource and domain-specific programming languages that typically lack the amount of data required for effective LLM processing techniques. This study focuses on the econometric scripting language named hansl of the open-source software gretl and employs a proprietary LLM based on GPT-3.5. Our findings suggest that LLMs can be a useful tool for writing, understanding, improving, and documenting gretl code, which includes generating descriptive docstrings for functions and providing precise explanations for abstract and poorly documented econometric code. While the LLM showcased promoting docstring-to-code translation capability, we also identify some limitations, such as its inability to improve certain sections of code and to write accurate unit tests. This study is a step towards leveraging the power of LLMs to facilitate software development in low-resource programming languages and ultimately to lower barriers to entry for their adoption.

This article presents an experiment focused on optimizing the MLOps (Machine Learning Operations) process, a crucial aspect of efficiently implementing machine learning projects. The objective is to identify patterns and insights to enhance the MLOps workflow, considering its iterative and interdependent nature in real-world model development scenarios. The experiment involves a comprehensive MLOps workflow, covering essential phases like problem definition, data acquisition, data preparation, model development, model deployment, monitoring, management, scalability, and governance and compliance. Practical tips and recommendations are derived from the results, emphasizing proactive planning and continuous improvement for the MLOps workflow. The experimental investigation was strategically integrated within a real-world ML project which followed essential phases of the MLOps process in a production environment, handling large-scale structured data. A systematic tracking approach was employed to document revisits to specific phases from a main phase under focus, capturing the reasons for such revisits. By constructing a matrix to quantify the degree of overlap between phases, the study unveils the dynamic and iterative nature of the MLOps workflow. The resulting data provides visual representations of the MLOps process's interdependencies and iterative characteristics within the experimental framework, offering valuable insights for optimizing the workflow and making informed decisions in real-world scenarios. This analysis contributes to enhancing the efficiency and effectiveness of machine learning projects through an improved MLOps process. Keywords: MLOps, Machine Learning Operations, Optimization, Experimental Analysis, Iterative Process, Pattern Identification.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

北京阿比特科技有限公司