亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider online reinforcement learning (RL) in episodic Markov decision processes (MDPs) under the linear $q^\pi$-realizability assumption, where it is assumed that the action-values of all policies can be expressed as linear functions of state-action features. This class is known to be more general than linear MDPs, where the transition kernel and the reward function are assumed to be linear functions of the feature vectors. As our first contribution, we show that the difference between the two classes is the presence of states in linearly $q^\pi$-realizable MDPs where for any policy, all the actions have approximately equal values, and skipping over these states by following an arbitrarily fixed policy in those states transforms the problem to a linear MDP. Based on this observation, we derive a novel (computationally inefficient) learning algorithm for linearly $q^\pi$-realizable MDPs that simultaneously learns what states should be skipped over and runs another learning algorithm on the linear MDP hidden in the problem. The method returns an $\epsilon$-optimal policy after $\text{polylog}(H, d)/\epsilon^2$ interactions with the MDP, where $H$ is the time horizon and $d$ is the dimension of the feature vectors, giving the first polynomial-sample-complexity online RL algorithm for this setting. The results are proved for the misspecified case, where the sample complexity is shown to degrade gracefully with the misspecification error.

相關內容

The current landscape of research leveraging large language models (LLMs) is experiencing a surge. Many works harness the powerful reasoning capabilities of these models to comprehend various modalities, such as text, speech, images, videos, etc. They also utilize LLMs to understand human intention and generate desired outputs like images, videos, and music. However, research that combines both understanding and generation using LLMs is still limited and in its nascent stage. To address this gap, we introduce a Multi-modal Music Understanding and Generation (M$^{2}$UGen) framework that integrates LLM's abilities to comprehend and generate music for different modalities. The M$^{2}$UGen framework is purpose-built to unlock creative potential from diverse sources of inspiration, encompassing music, image, and video through the use of pretrained MERT, ViT, and ViViT models, respectively. To enable music generation, we explore the use of AudioLDM 2 and MusicGen. Bridging multi-modal understanding and music generation is accomplished through the integration of the LLaMA 2 model. Furthermore, we make use of the MU-LLaMA model to generate extensive datasets that support text/image/video-to-music generation, facilitating the training of our M$^{2}$UGen framework. We conduct a thorough evaluation of our proposed framework. The experimental results demonstrate that our model achieves or surpasses the performance of the current state-of-the-art models.

The paper studies nonstationary high-dimensional vector autoregressions of order $k$, VAR($k$). Additional deterministic terms such as trend or seasonality are allowed. The number of time periods, $T$, and the number of coordinates, $N$, are assumed to be large and of the same order. Under this regime the first-order asymptotics of the Johansen likelihood ratio (LR), Pillai-Bartlett, and Hotelling-Lawley tests for cointegration are derived: the test statistics converge to nonrandom integrals. For more refined analysis, the paper proposes and analyzes a modification of the Johansen test. The new test for the absence of cointegration converges to the partial sum of the Airy$_1$ point process. Supporting Monte Carlo simulations indicate that the same behavior persists universally in many situations beyond those considered in our theorems. The paper presents empirical implementations of the approach for the analysis of S$\&$P$100$ stocks and of cryptocurrencies. The latter example has a strong presence of multiple cointegrating relationships, while the results for the former are consistent with the null of no cointegration.

Given two $n$-element structures, $\mathcal{A}$ and $\mathcal{B}$, which can be distinguished by a sentence of $k$-variable first-order logic ($\mathcal{L}^k$), what is the minimum $f(n)$ such that there is guaranteed to be a sentence $\phi \in \mathcal{L}^k$ with at most $f(n)$ quantifiers, such that $\mathcal{A} \models \phi$ but $\mathcal{B} \not \models \phi$? We will present various results related to this question obtained by using the recently introduced QVT games. In particular, we show that when we limit the number of variables, there can be an exponential gap between the quantifier depth and the quantifier number needed to separate two structures. Through the lens of this question, we will highlight some difficulties that arise in analysing the QVT game and some techniques which can help to overcome them. We also show, in the setting of the existential-positive fragment, how to lift quantifier depth lower bounds to quantifier number lower bounds. This leads to almost tight bounds.

The task of out-of-distribution (OOD) detection is crucial for deploying machine learning models in real-world settings. In this paper, we observe that the singular value distributions of the in-distribution (ID) and OOD features are quite different: the OOD feature matrix tends to have a larger dominant singular value than the ID feature, and the class predictions of OOD samples are largely determined by it. This observation motivates us to propose \texttt{RankFeat}, a simple yet effective \emph{post hoc} approach for OOD detection by removing the rank-1 matrix composed of the largest singular value and the associated singular vectors from the high-level feature. \texttt{RankFeat} achieves \emph{state-of-the-art} performance and reduces the average false positive rate (FPR95) by 17.90\% compared with the previous best method. The success of \texttt{RankFeat} motivates us to investigate whether a similar phenomenon would exist in the parameter matrices of neural networks. We thus propose \texttt{RankWeight} which removes the rank-1 weight from the parameter matrices of a single deep layer. Our \texttt{RankWeight}is also \emph{post hoc} and only requires computing the rank-1 matrix once. As a standalone approach, \texttt{RankWeight} has very competitive performance against other methods across various backbones. Moreover, \texttt{RankWeight} enjoys flexible compatibility with a wide range of OOD detection methods. The combination of \texttt{RankWeight} and \texttt{RankFeat} refreshes the new \emph{state-of-the-art} performance, achieving the FPR95 as low as 16.13\% on the ImageNet-1k benchmark. Extensive ablation studies and comprehensive theoretical analyses are presented to support the empirical results.

Uplink rate-splitting multiple access (RSMA) requires optimization of decoding order and power allocation, while decoding order is a discrete variable, and it is very complex to find the optimal decoding order if the number of users is large enough. This letter proposes a low-complexity user pairing-based resource allocation algorithm with the objective of minimizing the maximum latency. Closed-form expressions for power and bandwidth allocation for a given latency are first derived. Then a bisection method is used to determine the minimum latency and optimal resource allocation. Finally, the proposed algorithm is compared with unpaired RSMA using an exhaustive method to obtain the optimal decoding order, unpaired RSMA using a suboptimal decoding order, paired non-orthogonal multiple access (NOMA) and unpaired NOMA. The results show that our proposed algorithm outperforms NOMA and achieves similar performance to unpaired RSMA. In addition, the complexity of the proposed algorithm is significantly reduced.

A one-dimensional sequence $u_0, u_1, u_2, \ldots \in [0, 1)$ is said to be completely uniformly distributed (CUD) if overlapping $s$-blocks $(u_i, u_{i+1}, \ldots , u_{i+s-1})$, $i = 0, 1, 2, \ldots$, are uniformly distributed for every dimension $s \geq 1$. This concept naturally arises in Markov chain quasi-Monte Carlo (QMC). However, the definition of CUD sequences is not constructive, and thus there remains the problem of how to implement the Markov chain QMC algorithm in practice. Harase (2021) focused on the $t$-value, which is a measure of uniformity widely used in the study of QMC, and implemented short-period Tausworthe generators (i.e., linear feedback shift register generators) over the two-element field $\mathbb{F}_2$ that approximate CUD sequences by running for the entire period. In this paper, we generalize a search algorithm over $\mathbb{F}_2$ to that over arbitrary finite fields $\mathbb{F}_b$ with $b$ elements and conduct a search for Tausworthe generators over $\mathbb{F}_b$ with $t$-values zero (i.e., optimal) for dimension $s = 3$ and small for $s \geq 4$, especially in the case where $b = 3, 4$, and $5$. We provide a parameter table of Tausworthe generators over $\mathbb{F}_4$, and report a comparison between our new generators over $\mathbb{F}_4$ and existing generators over $\mathbb{F}_2$ in numerical examples using Markov chain QMC.

We provide a simple $(1-O(\frac{1}{\sqrt{k}}))$-selectable Online Contention Resolution Scheme for $k$-uniform matroids against a fixed-order adversary. If $A_i$ and $G_i$ denote the set of selected elements and the set of realized active elements among the first $i$ (respectively), our algorithm selects with probability $1-\frac{1}{\sqrt{k}}$ any active element $i$ such that $|A_{i-1}| + 1 \leq (1-\frac{1}{\sqrt{k}})\cdot \mathbb{E}[|G_i|]+\sqrt{k}$. This implies a $(1-O(\frac{1}{\sqrt{k}}))$ prophet inequality against fixed-order adversaries for $k$-uniform matroids that is considerably simpler than previous algorithms [Ala14, AKW14, JMZ22]. We also prove that no OCRS can be $(1-\Omega(\sqrt{\frac{\log k}{k}}))$-selectable for $k$-uniform matroids against an almighty adversary. This guarantee is matched by the (known) simple greedy algorithm that accepts every active element with probability $1-\Theta(\sqrt{\frac{\log k}{k}})$ [HKS07].

Based on the theory of homogeneous spaces we derive \textit{geometrically optimal edge attributes} to be used within the flexible message passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions $\mathbb{R}^3$, position and orientations $\mathbb{R}^3 {\times} S^2$, and the group SE$(3)$ itself. Among these, $\mathbb{R}^3 {\times} S^2$ is an optimal choice due to the ability to represent directional information, which $\mathbb{R}^3$ methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE$(3)$ group. We empirically support this claim by reaching state-of-the-art results -- in accuracy and speed -- on three different benchmarks: interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.

$k$-clique listing is a vital graph mining operator with diverse applications in various networks. The state-of-the-art algorithms all adopt a branch-and-bound (BB) framework with a vertex-oriented branching strategy (called VBBkC), which forms a sub-branch by expanding a partial $k$-clique with a vertex. These algorithms have the time complexity of $O(k m (\delta/2)^{k-2})$, where $m$ is the number of edges in the graph and $\delta$ is the degeneracy of the graph. In this paper, we propose a BB framework with a new edge-oriented branching (called EBBkC), which forms a sub-branch by expanding a partial $k$-clique with two vertices that connect each other (which correspond to an edge). We explore various edge orderings for EBBkC such that it achieves a time complexity of $O(\delta m + k m (\tau/2)^{k-2})$, where $\tau$ is an integer related to the maximum truss number of the graph and we have $\tau < \delta$. The time complexity of EBBkC is better than that of VBBkC algorithms for $k>3$ since both $O(\delta m)$ and $O(k m (\tau/2)^{k-2})$ are bounded by $O(k m (\delta/2)^{k-2})$. Furthermore, we develop specialized algorithms for sub-branches on dense graphs so that we can early-terminate them and apply the specialized algorithms. We conduct extensive experiments on 19 real graphs, and the results show that our newly developed EBBkC-based algorithms with the early termination technique consistently and largely outperform the state-of-the-art (VBBkC-based) algorithms.

Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.

北京阿比特科技有限公司