A key challenge facing deep learning is that neural networks are often not robust to shifts in the underlying data distribution. We study this problem from the perspective of the statistical concept of parameter identification. Generalization bounds from learning theory often assume that the test distribution is close to the training distribution. In contrast, if we can identify the "true" parameters, then the model generalizes to arbitrary distribution shifts. However, neural networks are typically overparameterized, making parameter identification impossible. We show that for quadratic neural networks, we can identify the function represented by the model even though we cannot identify its parameters. Thus, we can obtain robust generalization bounds even in the overparameterized setting. We leverage this result to obtain new bounds for contextual bandits and transfer learning with quadratic neural networks. Overall, our results suggest that we can improve robustness of neural networks by designing models that can represent the true data generating process. In practice, the true data generating process is often very complex; thus, we study how our framework might connect to neural module networks, which are designed to break down complex tasks into compositions of simpler ones. We prove robust generalization bounds when individual neural modules are identifiable.
Mitigating the dependence on spurious correlations present in the training dataset is a quickly emerging and important topic of deep learning. Recent approaches include priors on the feature attribution of a deep neural network (DNN) into the training process to reduce the dependence on unwanted features. However, until now one needed to trade off high-quality attributions, satisfying desirable axioms, against the time required to compute them. This in turn either led to long training times or ineffective attribution priors. In this work, we break this trade-off by considering a special class of efficiently axiomatically attributable DNNs for which an axiomatic feature attribution can be computed with only a single forward/backward pass. We formally prove that nonnegatively homogeneous DNNs, here termed $\mathcal{X}$-DNNs, are efficiently axiomatically attributable and show that they can be effortlessly constructed from a wide range of regular DNNs by simply removing the bias term of each layer. Various experiments demonstrate the advantages of $\mathcal{X}$-DNNs, beating state-of-the-art generic attribution methods on regular DNNs for training with attribution priors.
The {\em tensor power method} generalizes the matrix power method to higher order arrays, or tensors. Like in the matrix case, the fixed points of the tensor power method are the eigenvectors of the tensor. While every real symmetric matrix has an eigendecomposition, the vectors generating a symmetric decomposition of a real symmetric tensor are not always eigenvectors of the tensor. In this paper we show that whenever an eigenvector {\em is} a generator of the symmetric decomposition of a symmetric tensor, then (if the order of the tensor is sufficiently high) this eigenvector is {\em robust} , i.e., it is an attracting fixed point of the tensor power method. We exhibit new classes of symmetric tensors whose symmetric decomposition consists of eigenvectors. Generalizing orthogonally decomposable tensors, we consider {\em equiangular tight frame decomposable} and {\em equiangular set decomposable} tensors. Our main result implies that such tensors can be decomposed using the tensor power method.
This paper studies the expressive power of artificial neural networks (NNs) with rectified linear units. To study them as a model of real-valued computation, we introduce the concept of Max-Affine Arithmetic Programs and show equivalence between them and NNs concerning natural complexity measures. We then use this result to show that two fundamental combinatorial optimization problems can be solved with polynomial-size NNs, which is equivalent to the existence of very special strongly polynomial time algorithms. First, we show that for any undirected graph with $n$ nodes, there is an NN of size $\mathcal{O}(n^3)$ that takes the edge weights as input and computes the value of a minimum spanning tree of the graph. Second, we show that for any directed graph with $n$ nodes and $m$ arcs, there is an NN of size $\mathcal{O}(m^2n^2)$ that takes the arc capacities as input and computes a maximum flow. These results imply in particular that the solutions of the corresponding parametric optimization problems where all edge weights or arc capacities are free parameters can be encoded in polynomial space and evaluated in polynomial time, and that such an encoding is provided by an NN.
One of the distinguishing characteristics of modern deep learning systems is that they typically employ neural network architectures that utilize enormous numbers of parameters, often in the millions and sometimes even in the billions. While this paradigm has inspired significant research on the properties of large networks, relatively little work has been devoted to the fact that these networks are often used to model large complex datasets, which may themselves contain millions or even billions of constraints. In this work, we focus on this high-dimensional regime in which both the dataset size and the number of features tend to infinity. We analyze the performance of random feature regression with features $F=f(WX+B)$ for a random weight matrix $W$ and random bias vector $B$, obtaining exact formulae for the asymptotic training and test errors for data generated by a linear teacher model. The role of the bias can be understood as parameterizing a distribution over activation functions, and our analysis directly generalizes to such distributions, even those not expressible with a traditional additive bias. Intriguingly, we find that a mixture of nonlinearities can improve both the training and test errors over the best single nonlinearity, suggesting that mixtures of nonlinearities might be useful for approximate kernel methods or neural network architecture design.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Perturbations targeting the graph structure have proven to be extremely effective in reducing the performance of Graph Neural Networks (GNNs), and traditional defenses such as adversarial training do not seem to be able to improve robustness. This work is motivated by the observation that adversarially injected edges effectively can be viewed as additional samples to a node's neighborhood aggregation function, which results in distorted aggregations accumulating over the layers. Conventional GNN aggregation functions, such as a sum or mean, can be distorted arbitrarily by a single outlier. We propose a robust aggregation function motivated by the field of robust statistics. Our approach exhibits the largest possible breakdown point of 0.5, which means that the bias of the aggregation is bounded as long as the fraction of adversarial edges of a node is less than 50\%. Our novel aggregation function, Soft Medoid, is a fully differentiable generalization of the Medoid and therefore lends itself well for end-to-end deep learning. Equipping a GNN with our aggregation improves the robustness with respect to structure perturbations on Cora ML by a factor of 3 (and 5.5 on Citeseer) and by a factor of 8 for low-degree nodes.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Deep reinforcement learning (RL) algorithms have shown an impressive ability to learn complex control policies in high-dimensional environments. However, despite the ever-increasing performance on popular benchmarks such as the Arcade Learning Environment (ALE), policies learned by deep RL algorithms often struggle to generalize when evaluated in remarkably similar environments. In this paper, we assess the generalization capabilities of DQN, one of the most traditional deep RL algorithms in the field. We provide evidence suggesting that DQN overspecializes to the training environment. We comprehensively evaluate the impact of traditional regularization methods, $\ell_2$-regularization and dropout, and of reusing the learned representations to improve the generalization capabilities of DQN. We perform this study using different game modes of Atari 2600 games, a recently introduced modification for the ALE which supports slight variations of the Atari 2600 games traditionally used for benchmarking. Despite regularization being largely underutilized in deep RL, we show that it can, in fact, help DQN learn more general features. These features can then be reused and fine-tuned on similar tasks, considerably improving the sample efficiency of DQN.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
In recent years, person re-identification (re-id) catches great attention in both computer vision community and industry. In this paper, we propose a new framework for person re-identification with a triplet-based deep similarity learning using convolutional neural networks (CNNs). The network is trained with triplet input: two of them have the same class labels and the other one is different. It aims to learn the deep feature representation, with which the distance within the same class is decreased, while the distance between the different classes is increased as much as possible. Moreover, we trained the model jointly on six different datasets, which differs from common practice - one model is just trained on one dataset and tested also on the same one. However, the enormous number of possible triplet data among the large number of training samples makes the training impossible. To address this challenge, a double-sampling scheme is proposed to generate triplets of images as effective as possible. The proposed framework is evaluated on several benchmark datasets. The experimental results show that, our method is effective for the task of person re-identification and it is comparable or even outperforms the state-of-the-art methods.