RoboChart is a core notation in the RoboStar framework. It is a timed and probabilistic domain-specific and state machine-based language for robotics. RoboChart supports shared variables and communication across entities in its component model. It has formal denotational semantics given in CSP. The semantic technique of Interaction Trees (ITrees) represents behaviours of reactive and concurrent programs interacting with their environments. Recent mechanisation of ITrees, along with ITree-based CSP semantics and a Z mathematical toolkit in Isabelle/HOL, bring new applications of verification and animation for state-rich process languages, such as RoboChart. In this paper, we use ITrees to give RoboChart novel operational semantics, implement it in Isabelle, and use Isabelle's code generator to generate verified and executable animations. We illustrate our approach using an autonomous chemical detector model and a patrol robot model additionally exhibiting nondeterminism and using shared variables. With animation, we show two concrete scenarios for the chemical detector when the robot encounters different environmental inputs and three concrete scenarios for the patrol robot when its calibrated position is in different sections of a corridor. We also verify that the animated scenarios are truly trace refinements of the CSP denotational semantics of the RoboChart models using FDR, a refinement model checker for CSP. This ensures that our approach to resolving nondeterminism using CSP operators with priority is sound and correct.
Gaussian processes are a powerful framework for quantifying uncertainty and for sequential decision-making but are limited by the requirement of solving linear systems. In general, this has a cubic cost in dataset size and is sensitive to conditioning. We explore stochastic gradient algorithms as a computationally efficient method of approximately solving these linear systems: we develop low-variance optimization objectives for sampling from the posterior and extend these to inducing points. Counterintuitively, stochastic gradient descent often produces accurate predictions, even in cases where it does not converge quickly to the optimum. We explain this through a spectral characterization of the implicit bias from non-convergence. We show that stochastic gradient descent produces predictive distributions close to the true posterior both in regions with sufficient data coverage, and in regions sufficiently far away from the data. Experimentally, stochastic gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks. Its uncertainty estimates match the performance of significantly more expensive baselines on a large-scale Bayesian~optimization~task.
Employing Stochastic Nonlinear Model Predictive Control (SNMPC) for real-time applications is challenging due to the complex task of propagating uncertainties through nonlinear systems. This difficulty becomes more pronounced in high-dimensional systems with extended prediction horizons, such as autonomous vehicles. To enhance closed-loop performance in and feasibility in SNMPCs, we introduce the concept of the Uncertainty Propagation Horizon (UPH). The UPH limits the time for uncertainty propagation through system dynamics, preventing trajectory divergence, optimizing feedback loop advantages, and reducing computational overhead. Our SNMPC approach utilizes Polynomial Chaos Expansion (PCE) to propagate uncertainties and incorporates nonlinear hard constraints on state expectations and nonlinear probabilistic constraints. We transform the probabilistic constraints into deterministic constraints by estimating the nonlinear constraints' expectation and variance. We then showcase our algorithm's effectiveness in real-time control of a high-dimensional, highly nonlinear system-the trajectory following of an autonomous passenger vehicle, modeled with a dynamic nonlinear single-track model. Experimental results demonstrate our approach's robust capability to follow an optimal racetrack trajectory at speeds of up to 37.5m/s while dealing with state estimation disturbances, achieving a minimum solving frequency of 97Hz. Additionally, our experiments illustrate that limiting the UPH renders previously infeasible SNMPC problems feasible, even when incorrect uncertainty assumptions or strong disturbances are present.
Online convex optimization (OCO) is a widely used framework in online learning. In each round, the learner chooses a decision in a convex set and an adversary chooses a convex loss function, and then the learner suffers the loss associated with their current decision. However, in many applications the learner's loss depends not only on the current decision but on the entire history of decisions until that point. The OCO framework and its existing generalizations do not capture this, and they can only be applied to many settings of interest after a long series of approximation arguments. They also leave open the question of whether the dependence on memory is tight because there are no non-trivial lower bounds. In this work we introduce a generalization of the OCO framework, ``Online Convex Optimization with Unbounded Memory'', that captures long-term dependence on past decisions. We introduce the notion of $p$-effective memory capacity, $H_p$, that quantifies the maximum influence of past decisions on present losses. We prove an $O(\sqrt{H_p T})$ upper bound on the policy regret and a matching (worst-case) lower bound. As a special case, we prove the first non-trivial lower bound for OCO with finite memory~\citep{anavaHM2015online}, which could be of independent interest, and also improve existing upper bounds. We demonstrate the broad applicability of our framework by using it to derive regret bounds, and to improve and simplify existing regret bound derivations, for a variety of online learning problems including online linear control and an online variant of performative prediction.
Bayesian optimization (BO) has emerged as a potent tool for addressing intricate decision-making challenges, especially in public policy domains such as police districting. However, its broader application in public policymaking is hindered by the complexity of defining feasible regions and the high-dimensionality of decisions. This paper introduces the Hidden-Constrained Latent Space Bayesian Optimization (HC-LSBO), a novel BO method integrated with a latent decision model. This approach leverages a variational autoencoder to learn the distribution of feasible decisions, enabling a two-way mapping between the original decision space and a lower-dimensional latent space. By doing so, HC-LSBO captures the nuances of hidden constraints inherent in public policymaking, allowing for optimization in the latent space while evaluating objectives in the original space. We validate our method through numerical experiments on both synthetic and real data sets, with a specific focus on large-scale police districting problems in Atlanta, Georgia. Our results reveal that HC-LSBO offers notable improvements in performance and efficiency compared to the baselines.
We develop a general framework for finding approximately-optimal preconditioners for solving linear systems. Leveraging this framework we obtain improved runtimes for fundamental preconditioning and linear system solving problems including the following. We give an algorithm which, given positive definite $\mathbf{K} \in \mathbb{R}^{d \times d}$ with $\mathrm{nnz}(\mathbf{K})$ nonzero entries, computes an $\epsilon$-optimal diagonal preconditioner in time $\widetilde{O}(\mathrm{nnz}(\mathbf{K}) \cdot \mathrm{poly}(\kappa^\star,\epsilon^{-1}))$, where $\kappa^\star$ is the optimal condition number of the rescaled matrix. We give an algorithm which, given $\mathbf{M} \in \mathbb{R}^{d \times d}$ that is either the pseudoinverse of a graph Laplacian matrix or a constant spectral approximation of one, solves linear systems in $\mathbf{M}$ in $\widetilde{O}(d^2)$ time. Our diagonal preconditioning results improve state-of-the-art runtimes of $\Omega(d^{3.5})$ attained by general-purpose semidefinite programming, and our solvers improve state-of-the-art runtimes of $\Omega(d^{\omega})$ where $\omega > 2.3$ is the current matrix multiplication constant. We attain our results via new algorithms for a class of semidefinite programs (SDPs) we call matrix-dictionary approximation SDPs, which we leverage to solve an associated problem we call matrix-dictionary recovery.
Neural additive models (NAMs) can improve the interpretability of deep neural networks by handling input features in separate additive sub-networks. However, they lack inherent mechanisms that provide calibrated uncertainties and enable selection of relevant features and interactions. Approaching NAMs from a Bayesian perspective, we enhance them in three primary ways, namely by a) providing credible intervals for the individual additive sub-networks; b) estimating the marginal likelihood to perform an implicit selection of features via an empirical Bayes procedure; and c) enabling a ranking of feature pairs as candidates for second-order interaction in fine-tuned models. In particular, we develop Laplace-approximated NAMs (LA-NAMs), which show improved empirical performance on tabular datasets and challenging real-world medical tasks.
Community Question Answering (CQA) in different domains is growing at a large scale because of the availability of several platforms and huge shareable information among users. With the rapid growth of such online platforms, a massive amount of archived data makes it difficult for moderators to retrieve possible duplicates for a new question and identify and confirm existing question pairs as duplicates at the right time. This problem is even more critical in CQAs corresponding to large software systems like askubuntu where moderators need to be experts to comprehend something as a duplicate. Note that the prime challenge in such CQA platforms is that the moderators are themselves experts and are therefore usually extremely busy with their time being extraordinarily expensive. To facilitate the task of the moderators, in this work, we have tackled two significant issues for the askubuntu CQA platform: (1) retrieval of duplicate questions given a new question and (2) duplicate question confirmation time prediction. In the first task, we focus on retrieving duplicate questions from a question pool for a particular newly posted question. In the second task, we solve a regression problem to rank a pair of questions that could potentially take a long time to get confirmed as duplicates. For duplicate question retrieval, we propose a Siamese neural network based approach by exploiting both text and network-based features, which outperforms several state-of-the-art baseline techniques. Our method outperforms DupPredictor and DUPE by 5% and 7% respectively. For duplicate confirmation time prediction, we have used both the standard machine learning models and neural network along with the text and graph-based features. We obtain Spearman's rank correlation of 0.20 and 0.213 (statistically significant) for text and graph based features respectively.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.
Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .