亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Objective: This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task-specific prompts to improve their performance. Materials and Methods: We evaluated these models on two clinical NER tasks: (1) to extract medical problems, treatments, and tests from clinical notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) identifying nervous system disorder-related adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annotation guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each prompt's effectiveness and compared the models to BioClinicalBERT. Results: Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples, and 0.301, 0.593 for VAERS. Additional prompt components consistently improved model performance. When all four components were used, GPT-3.5 and GPT-4 achieved relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering few training samples are needed. Conclusion: While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt framework, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.

相關內容

Symmetry is a fundamental aspect of many real-world robotic tasks. However, current deep reinforcement learning (DRL) approaches can seldom harness and exploit symmetry effectively. Often, the learned behaviors fail to achieve the desired transformation invariances and suffer from motion artifacts. For instance, a quadruped may exhibit different gaits when commanded to move forward or backward, even though it is symmetrical about its torso. This issue becomes further pronounced in high-dimensional or complex environments, where DRL methods are prone to local optima and fail to explore regions of the state space equally. Past methods on encouraging symmetry for robotic tasks have studied this topic mainly in a single-task setting, where symmetry usually refers to symmetry in the motion, such as the gait patterns. In this paper, we revisit this topic for goal-conditioned tasks in robotics, where symmetry lies mainly in task execution and not necessarily in the learned motions themselves. In particular, we investigate two approaches to incorporate symmetry invariance into DRL -- data augmentation and mirror loss function. We provide a theoretical foundation for using augmented samples in an on-policy setting. Based on this, we show that the corresponding approach achieves faster convergence and improves the learned behaviors in various challenging robotic tasks, from climbing boxes with a quadruped to dexterous manipulation.

In the rapidly evolving landscape of 5G and beyond 5G (B5G) mobile cellular communications, efficient data compression and reconstruction strategies become paramount, especially in massive multiple-input multiple-output (MIMO) systems. A critical challenge in these systems is the capacity-limited fronthaul, particularly in the context of the Ethernet-based common public radio interface (eCPRI) connecting baseband units (BBUs) and remote radio units (RRUs). This capacity limitation hinders the effective handling of increased traffic and data flows. We propose a novel two-stage compression approach to address this bottleneck. The first stage employs sparse Tucker decomposition, targeting the weight tensor's low-rank components for compression. The second stage further compresses these components using complex givens decomposition and run-length encoding, substantially improving the compression ratio. Our approach specifically targets the Zero-Forcing (ZF) beamforming weights in BBUs. By reconstructing these weights in RRUs, we significantly alleviate the burden on eCPRI traffic, enabling a higher number of concurrent streams in the radio access network (RAN). Through comprehensive evaluations, we demonstrate the superior effectiveness of our method in Channel State Information (CSI) compression, paving the way for more efficient 5G/B5G fronthaul links.

This study designs an adaptive experiment for efficiently estimating average treatment effect (ATEs). We consider an adaptive experiment where an experimenter sequentially samples an experimental unit from a covariate density decided by the experimenter and assigns a treatment. After assigning a treatment, the experimenter observes the corresponding outcome immediately. At the end of the experiment, the experimenter estimates an ATE using gathered samples. The objective of the experimenter is to estimate the ATE with a smaller asymptotic variance. Existing studies have designed experiments that adaptively optimize the propensity score (treatment-assignment probability). As a generalization of such an approach, we propose a framework under which an experimenter optimizes the covariate density, as well as the propensity score, and find that optimizing both covariate density and propensity score reduces the asymptotic variance more than optimizing only the propensity score. Based on this idea, in each round of our experiment, the experimenter optimizes the covariate density and propensity score based on past observations. To design an adaptive experiment, we first derive the efficient covariate density and propensity score that minimizes the semiparametric efficiency bound, a lower bound for the asymptotic variance given a fixed covariate density and a fixed propensity score. Next, we design an adaptive experiment using the efficient covariate density and propensity score sequentially estimated during the experiment. Lastly, we propose an ATE estimator whose asymptotic variance aligns with the minimized semiparametric efficiency bound.

Due to the inability to interact with the environment, offline reinforcement learning (RL) methods face the challenge of estimating the Out-of-Distribution (OOD) points. Existing methods for addressing this issue either control policy to exclude the OOD action or make the $Q$ function pessimistic. However, these methods can be overly conservative or fail to identify OOD areas accurately. To overcome this problem, we propose a Constrained Policy optimization with Explicit Behavior density (CPED) method that utilizes a flow-GAN model to explicitly estimate the density of behavior policy. By estimating the explicit density, CPED can accurately identify the safe region and enable optimization within the region, resulting in less conservative learning policies. We further provide theoretical results for both the flow-GAN estimator and performance guarantee for CPED by showing that CPED can find the optimal $Q$-function value. Empirically, CPED outperforms existing alternatives on various standard offline reinforcement learning tasks, yielding higher expected returns.

We study the Densest Subgraph (DSG) problem under the additional constraint of differential privacy. DSG is a fundamental theoretical question which plays a central role in graph analytics, and so privacy is a natural requirement. But all known private algorithms for Densest Subgraph lose constant multiplicative factors as well as relative large (at least $\log^2 n$) additive factors, despite the existence of non-private exact algorithms. We show that, perhaps surprisingly, these losses are not necessary: in both the classic differential privacy model and the LEDP model (local edge differential privacy, introduced recently by Dhulipala et al. [FOCS 2022]), we give $(\epsilon, \delta)$-differentially private algorithms with no multiplicative loss whatsoever. In other words, the loss is purely additive. Moreover, our additive losses improve the best-known previous additive loss (in any version of differential privacy) when $1/\delta$ is at least polynomial in $n$, and are almost tight: in the centralized setting, our additive loss is $O(\log n /\epsilon)$ while there is a known lower bound of $\Omega(\sqrt{\log n / \epsilon})$. Additionally, we give a different algorithm that is $\epsilon$-differentially private in the LEDP model which achieves a multiplicative ratio arbitrarily close to $2$, along with an additional additive factor. This improves over the previous multiplicative $4$-approximation in the LEDP model. Finally, we conclude with extensions of our techniques to both the node-weighted and the directed versions of the problem.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Drug-drug interaction(DDI) prediction is an important task in the medical health machine learning community. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCNs and bond-aware attentive message passing networks to encode DDI relationships and drug molecular graphs in the MIRACLE learning stage, respectively. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司