亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper derives confidence intervals (CI) and time-uniform confidence sequences (CS) for the classical problem of estimating an unknown mean from bounded observations. We present a general approach for deriving concentration bounds, that can be seen as a generalization (and improvement) of the celebrated Chernoff method. At its heart, it is based on deriving a new class of composite nonnegative martingales, with strong connections to testing by betting and the method of mixtures. We show how to extend these ideas to sampling without replacement, another heavily studied problem. In all cases, our bounds are adaptive to the unknown variance, and empirically vastly outperform existing approaches based on Hoeffding or empirical Bernstein inequalities and their recent supermartingale generalizations. In short, we establish a new state-of-the-art for four fundamental problems: CSs and CIs for bounded means, when sampling with and without replacement.

相關內容

We study synchronous Q-learning with Polyak-Ruppert averaging (a.k.a., averaged Q-leaning) in a $\gamma$-discounted MDP. We establish asymptotic normality for the averaged iteration $\bar{\boldsymbol{Q}}_T$. Furthermore, we show that $\bar{\boldsymbol{Q}}_T$ is actually a regular asymptotically linear (RAL) estimator for the optimal Q-value function $\boldsymbol{Q}^*$ with the most efficient influence function. It implies the averaged Q-learning iteration has the smallest asymptotic variance among all RAL estimators. In addition, we present a non-asymptotic analysis for the $\ell_{\infty}$ error $\mathbb{E}\|\bar{\boldsymbol{Q}}_T-\boldsymbol{Q}^*\|_{\infty}$, showing it matches the instance-dependent lower bound as well as the optimal minimax complexity lower bound. As a byproduct, we find the Bellman noise has sub-Gaussian coordinates with variance $\mathcal{O}((1-\gamma)^{-1})$ instead of the prevailing $\mathcal{O}((1-\gamma)^{-2})$ under the standard bounded reward assumption. The sub-Gaussian result has potential to improve the sample complexity of many RL algorithms. In short, our theoretical analysis shows averaged Q-Leaning is statistically efficient.

It was recently shown that under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds. However, rather than the distance itself, the object of interest for applications such as generative modeling is the underlying optimal transport map. Hence, computational and statistical guarantees need to be obtained for the estimated maps themselves. In this paper, we propose the first tractable algorithm for which the statistical $L^2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation. Our method is based on solving the semi-dual formulation of optimal transport with an infinite-dimensional sum-of-squares reformulation, and leads to an algorithm which has dimension-free polynomial rates in the number of samples, with potentially exponentially dimension-dependent constants.

In Chen and Zhou 2021, they consider an inference problem for an Ornstein-Uhlenbeck process driven by a general one-dimensional centered Gaussian process $(G_t)_{t\ge 0}$. The second order mixed partial derivative of the covariance function $ R(t,\, s)=\mathbb{E}[G_t G_s]$ can be decomposed into two parts, one of which coincides with that of fractional Brownian motion and the other is bounded by $(ts)^{H-1}$ with $H\in (\frac12,\,1)$, up to a constant factor. In this paper, we investigate the same problem but with the assumption of $H\in (0,\,\frac12)$. It is well known that there is a significant difference between the Hilbert space associated with the fractional Gaussian processes in the case of $H\in (\frac12, 1)$ and that of $H\in (0, \frac12)$. The starting point of this paper is a new relationship between the inner product of $\mathfrak{H}$ associated with the Gaussian process $(G_t)_{t\ge 0}$ and that of the Hilbert space $\mathfrak{H}_1$ associated with the fractional Brownian motion $(B^{H}_t)_{t\ge 0}$. Then we prove the strong consistency with $H\in (0, \frac12)$, and the asymptotic normality and the Berry-Ess\'{e}en bounds with $H\in (0,\frac38)$ for both the least squares estimator and the moment estimator of the drift parameter constructed from the continuous observations. A good many inequality estimates are involved in and we also make use of the estimation of the inner product based on the results of $\mathfrak{H}_1$ in Hu, Nualart and Zhou 2019.

This study concerns probability distribution estimation of sample maximum. The traditional approach is the parametric fitting to the limiting distribution - the generalized extreme value distribution; however, the model in finite cases is misspecified to a certain extent. We propose a plug-in type of the kernel distribution estimator which does not need model specification. It is proved that both asymptotic convergence rates depend on the tail index and the second order parameter. As the tail gets light, the degree of misspecification of the parametric fitting becomes large, that means the convergence rate becomes slow. In the Weibull cases, which can be seen as the limit of tail-lightness, only the nonparametric distribution estimator keeps its consistency. Finally, we report results of numerical experiments and two real case studies.

We study continuity of the roots of nonmonic polynomials as a function of their coefficients using only the most elementary results from an introductory course in real analysis and the theory of single variable polynomials. Our approach gives both qualitative and quantitative results in the case that the degree of the unperturbed polynomial can change under a perturbation of its coefficients, a case that naturally occurs, for instance, in stability theory of polynomials, singular perturbation theory, or in the perturbation theory for generalized eigenvalue problems. An application of our results in multivariate stability theory is provided which is important in, for example, the study of hyperbolic polynomials or realizability and synthesis problems in passive electrical network theory, and will be of general interest to mathematicians as well as physicists and engineers.

In many practical settings control decisions must be made under partial/imperfect information about the evolution of a relevant state variable. Partially Observable Markov Decision Processes (POMDPs) is a relatively well-developed framework for modeling and analyzing such problems. In this paper we consider the structural estimation of the primitives of a POMDP model based upon the observable history of the process. We analyze the structural properties of POMDP model with random rewards and specify conditions under which the model is identifiable without knowledge of the state dynamics. We consider a soft policy gradient algorithm to compute a maximum likelihood estimator and provide a finite-time characterization of convergence to a stationary point. We illustrate the estimation methodology with an application to optimal equipment replacement. In this context, replacement decisions must be made under partial/imperfect information on the true state (i.e. condition of the equipment). We use synthetic and real data to highlight the robustness of the proposed methodology and characterize the potential for misspecification when partial state observability is ignored.

In this paper we prove upper and lower bounds on the minimal spherical dispersion. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, up to logarithmic terms linear in the dimension $d$. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere.

The Ensemble Kalman Filter (EnKF) belongs to the class of iterative particle filtering methods and can be used for solving control--to--observable inverse problems. In this context, the EnKF is known as Ensemble Kalman Inversion (EKI). In recent years several continuous limits in the number of iteration and particles have been performed in order to study properties of the method. In particular, a one--dimensional linear stability analysis reveals possible drawbacks in the phase space of moments provided by the continuous limits of the EKI, but observed also in the multi--dimensional setting. In this work we address this issue by introducing a stabilization of the dynamics which leads to a method with globally asymptotically stable solutions. We illustrate the performance of the stabilized version by using test inverse problems from the literature and comparing it with the classical continuous limit formulation of the method.

This work studies an experimental design problem where $x$'s are to be selected with the goal of estimating a function $m(x)$, which is observed with noise. A linear model is fitted to $m(x)$ but it is not assumed that the model is correctly specified. It follows that the quantity of interest is the best linear approximation of $m(x)$, which is denoted by $\ell(x)$. It is shown that in this framework the ordinary least squares estimator typically leads to an inconsistent estimation of $\ell(x)$, and rather weighted least squares should be considered. An asymptotic minimax criterion is formulated for this estimator, and a design that minimizes the criterion is constructed. An important feature of this problem is that the $x$'s should be random, rather than fixed. Otherwise, the minimax risk is infinite. It is shown that the optimal random minimax design is different from its deterministic counterpart, which was studied previously, and a simulation study indicates that it generally performs better when $m(x)$ is a quadratic or a cubic function. Another finding is that when the variance of the noise goes to infinity, the random and deterministic minimax designs coincide. The results are illustrated for polynomial regression models and different generalizations are presented.

We address the question of characterizing and finding optimal representations for supervised learning. Traditionally, this question has been tackled using the Information Bottleneck, which compresses the inputs while retaining information about the targets, in a decoder-agnostic fashion. In machine learning, however, our goal is not compression but rather generalization, which is intimately linked to the predictive family or decoder of interest (e.g. linear classifier). We propose the Decodable Information Bottleneck (DIB) that considers information retention and compression from the perspective of the desired predictive family. As a result, DIB gives rise to representations that are optimal in terms of expected test performance and can be estimated with guarantees. Empirically, we show that the framework can be used to enforce a small generalization gap on downstream classifiers and to predict the generalization ability of neural networks.

北京阿比特科技有限公司