亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Beyond 100G passive optical networks (PONs) will be required to meet the ever-increasing traffic demand in the future. Coherent optical technologies are the competitive solutions for the future beyond 100G PON but also face challenges such as the high computational complexity of digital signal processing (DSP). A high oversampling rate in coherent optical technologies results in the high computational complexity of DSP. Therefore, DSP running in a non-integer-oversampling below 2 samples-per-symbol (sps) is preferred, which can not only reduce computational complexity but also obviously lower the requirement for the analog-to-digital converter. In this paper, we propose a non-integer-oversampling DSP for meeting the requirements of coherent PON. The proposed DSP working at 9/8-sps and 5/4-sps oversampling rates can be reduced by 44.04% and 40.78% computational complexity compared to that working at the 2-sps oversampling rate, respectively. Moreover, a 400-Gb/s-net-rate coherent PON based on digital subcarrier multiplexing was demonstrated to verify the feasibility of the non-integer-oversampling DSP. There is almost no penalty on the receiver sensitivity when the non-integer-oversampling DSP is adopted. In conclusion, the non-integer-oversampling DSP shows great potential in the future coherent PON.

相關內容

CC在計算復雜性方面表現突出。它的學科處于數學與計算機理論科學的交叉點,具有清晰的數學輪廓和嚴格的數學格式。官網鏈接: · 教師網絡 · · 目標檢測 · 監督 ·
2023 年 8 月 11 日

Recent progress in weakly supervised object detection is featured by a combination of multiple instance detection networks (MIDN) and ordinal online refinement. However, with only image-level annotation, MIDN inevitably assigns high scores to some unexpected region proposals when generating pseudo labels. These inaccurate high-scoring region proposals will mislead the training of subsequent refinement modules and thus hamper the detection performance. In this work, we explore how to ameliorate the quality of pseudo-labeling in MIDN. Formally, we devise Cyclic-Bootstrap Labeling (CBL), a novel weakly supervised object detection pipeline, which optimizes MIDN with rank information from a reliable teacher network. Specifically, we obtain this teacher network by introducing a weighted exponential moving average strategy to take advantage of various refinement modules. A novel class-specific ranking distillation algorithm is proposed to leverage the output of weighted ensembled teacher network for distilling MIDN with rank information. As a result, MIDN is guided to assign higher scores to accurate proposals among their neighboring ones, thus benefiting the subsequent pseudo labeling. Extensive experiments on the prevalent PASCAL VOC 2007 \& 2012 and COCO datasets demonstrate the superior performance of our CBL framework. Code will be available at //github.com/Yinyf0804/WSOD-CBL/.

Transformer has recently gained considerable popularity in low-level vision tasks, including image super-resolution (SR). These networks utilize self-attention along different dimensions, spatial or channel, and achieve impressive performance. This inspires us to combine the two dimensions in Transformer for a more powerful representation capability. Based on the above idea, we propose a novel Transformer model, Dual Aggregation Transformer (DAT), for image SR. Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner. Specifically, we alternately apply spatial and channel self-attention in consecutive Transformer blocks. The alternate strategy enables DAT to capture the global context and realize inter-block feature aggregation. Furthermore, we propose the adaptive interaction module (AIM) and the spatial-gate feed-forward network (SGFN) to achieve intra-block feature aggregation. AIM complements two self-attention mechanisms from corresponding dimensions. Meanwhile, SGFN introduces additional non-linear spatial information in the feed-forward network. Extensive experiments show that our DAT surpasses current methods. Code and models are obtainable at //github.com/zhengchen1999/DAT.

We introduce TitaNet-LID, a compact end-to-end neural network for Spoken Language Identification (LID) that is based on the ContextNet architecture. TitaNet-LID employs 1D depth-wise separable convolutions and Squeeze-and-Excitation layers to effectively capture local and global context within an utterance. Despite its small size, TitaNet-LID achieves performance similar to state-of-the-art models on the VoxLingua107 dataset while being 10 times smaller. Furthermore, it can be easily adapted to new acoustic conditions and unseen languages through simple fine-tuning, achieving a state-of-the-art accuracy of 88.2% on the FLEURS benchmark. Our model is scalable and can achieve a better trade-off between accuracy and speed. TitaNet-LID performs well even on short utterances less than 5s in length, indicating its robustness to input length.

Convolutional neural networks (CNNs) and vision transformers (ViTs) have achieved remarkable success in various vision tasks. However, many architectures do not consider interactions between feature maps from different stages and scales, which may limit their performance. In this work, we propose a simple add-on attention module to overcome these limitations via multi-stage and cross-scale interactions. Specifically, the proposed Multi-Stage Cross-Scale Attention (\meth) module takes feature maps from different stages to enable multi-stage interactions and achieves cross-scale interactions by computing self-attention at different scales based on the multi-stage feature maps. Our experiments on several downstream tasks show that \meth~provides a significant performance boost with modest additional FLOPs and runtime.

Unmanned Aerial Vehicles (UAVs) rely on satellite systems for stable positioning. However, due to limited satellite coverage or communication disruptions, UAVs may lose signals from satellite-based positioning systems. In such situations, vision-based techniques can serve as an alternative, ensuring the self-positioning capability of UAVs. However, most of the existing datasets are developed for the geo-localization tasks of the objects identified by UAVs, rather than the self-positioning task of UAVs. Furthermore, the current UAV datasets use discrete sampling on synthetic data, such as Google Maps, thereby neglecting the crucial aspects of dense sampling and the uncertainties commonly experienced in real-world scenarios. To address these issues, this paper presents a new dataset, DenseUAV, which is the first publicly available dataset designed for the UAV self-positioning task. DenseUAV adopts dense sampling on UAV images obtained in low-altitude urban settings. In total, over 27K UAV-view and satellite-view images of 14 university campuses are collected and annotated, establishing a new benchmark. In terms of model development, we first verify the superiority of Transformers over CNNs in this task. Then, we incorporate metric learning into representation learning to enhance the discriminative capacity of the model and to lessen the modality discrepancy. Besides, to facilitate joint learning from both perspectives, we propose a mutually supervised learning approach. Last, we enhance the Recall@K metric and introduce a new measurement, SDM@K, to evaluate the performance of a trained model from both the retrieval and localization perspectives simultaneously. As a result, the proposed baseline method achieves a remarkable Recall@1 score of 83.05% and an SDM@1 score of 86.24% on DenseUAV. The dataset and code will be made publicly available on //github.com/Dmmm1997/DenseUAV.

Social media platforms, despite their value in promoting open discourse, are often exploited to spread harmful content. Current deep learning and natural language processing models used for detecting this harmful content overly rely on domain-specific terms affecting their capabilities to adapt to generalizable hate speech detection. This is because they tend to focus too narrowly on particular linguistic signals or the use of certain categories of words. Another significant challenge arises when platforms lack high-quality annotated data for training, leading to a need for cross-platform models that can adapt to different distribution shifts. Our research introduces a cross-platform hate speech detection model capable of being trained on one platform's data and generalizing to multiple unseen platforms. To achieve good generalizability across platforms, one way is to disentangle the input representations into invariant and platform-dependent features. We also argue that learning causal relationships, which remain constant across diverse environments, can significantly aid in understanding invariant representations in hate speech. By disentangling input into platform-dependent features (useful for predicting hate targets) and platform-independent features (used to predict the presence of hate), we learn invariant representations resistant to distribution shifts. These features are then used to predict hate speech across unseen platforms. Our extensive experiments across four platforms highlight our model's enhanced efficacy compared to existing state-of-the-art methods in detecting generalized hate speech.

The proliferation of short video and live-streaming platforms has revolutionized how consumers engage in online shopping. Instead of browsing product pages, consumers are now turning to rich-content e-commerce, where they can purchase products through dynamic and interactive media like short videos and live streams. This emerging form of online shopping has introduced technical challenges, as products may be presented differently across various media domains. Therefore, a unified product representation is essential for achieving cross-domain product recognition to ensure an optimal user search experience and effective product recommendations. Despite the urgent industrial need for a unified cross-domain product representation, previous studies have predominantly focused only on product pages without taking into account short videos and live streams. To fill the gap in the rich-content e-commerce area, in this paper, we introduce a large-scale cRoss-dOmain Product Ecognition dataset, called ROPE. ROPE covers a wide range of product categories and contains over 180,000 products, corresponding to millions of short videos and live streams. It is the first dataset to cover product pages, short videos, and live streams simultaneously, providing the basis for establishing a unified product representation across different media domains. Furthermore, we propose a Cross-dOmain Product rEpresentation framework, namely COPE, which unifies product representations in different domains through multimodal learning including text and vision. Extensive experiments on downstream tasks demonstrate the effectiveness of COPE in learning a joint feature space for all product domains.

Compressed data aggregation (CDA) over wireless sensor networks (WSNs) is task-specific and subject to environmental changes. However, the existing compressed data aggregation (CDA) frameworks (e.g., compressed sensing-based data aggregation, deep learning(DL)-based data aggregation) do not possess the flexibility and adaptivity required to handle distinct sensing tasks and environmental changes. Additionally, they do not consider the performance of follow-up IoT data-driven deep learning (DL)-based applications. To address these shortcomings, we propose OrcoDCS, an IoT-Edge orchestrated online deep compressed sensing framework that offers high flexibility and adaptability to distinct IoT device groups and their sensing tasks, as well as high performance for follow-up applications. The novelty of our work is the design and deployment of IoT-Edge orchestrated online training framework over WSNs by leveraging an specially-designed asymmetric autoencoder, which can largely reduce the encoding overhead and improve the reconstruction performance and robustness. We show analytically and empirically that OrcoDCS outperforms the state-of-the-art DCDA on training time, significantly improves flexibility and adaptability when distinct reconstruction tasks are given, and achieves higher performance for follow-up applications.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

北京阿比特科技有限公司