亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Scene text removal (STR) is a challenging task due to the complex text fonts, colors, sizes, and background textures in scene images. However, most previous methods learn both text location and background inpainting implicitly within a single network, which weakens the text localization mechanism and makes a lossy background. To tackle these problems, we propose a simple Progressive Segmentation-guided Scene Text Removal Network(PSSTRNet) to remove the text in the image iteratively. It contains two decoder branches, a text segmentation branch, and a text removal branch, with a shared encoder. The text segmentation branch generates text mask maps as the guidance for the regional removal branch. In each iteration, the original image, previous text removal result, and text mask are input to the network to extract the rest part of the text segments and cleaner text removal result. To get a more accurate text mask map, an update module is developed to merge the mask map in the current and previous stages. The final text removal result is obtained by adaptive fusion of results from all previous stages. A sufficient number of experiments and ablation studies conducted on the real and synthetic public datasets demonstrate our proposed method achieves state-of-the-art performance. The source code of our work is available at: \href{//github.com/GuangtaoLyu/PSSTRNet}{//github.com/GuangtaoLyu/PSSTRNet.}

相關內容

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.

Weakly-supervised image segmentation has recently attracted increasing research attentions, aiming to avoid the expensive pixel-wise labeling. In this paper, we present an effective method, namely Point2Mask, to achieve high-quality panoptic prediction using only a single random point annotation per target for training. Specifically, we formulate the panoptic pseudo-mask generation as an Optimal Transport (OT) problem, where each ground-truth (gt) point label and pixel sample are defined as the label supplier and consumer, respectively. The transportation cost is calculated by the introduced task-oriented maps, which focus on the category-wise and instance-wise differences among the various thing and stuff targets. Furthermore, a centroid-based scheme is proposed to set the accurate unit number for each gt point supplier. Hence, the pseudo-mask generation is converted into finding the optimal transport plan at a globally minimal transportation cost, which can be solved via the Sinkhorn-Knopp Iteration. Experimental results on Pascal VOC and COCO demonstrate the promising performance of our proposed Point2Mask approach to point-supervised panoptic segmentation. Source code is available at: //github.com/LiWentomng/Point2Mask.

We present Uni-Fusion, a universal continuous mapping framework for surfaces, surface properties (color, infrared, etc.) and more (latent features in CLIP embedding space, etc.). We propose the first universal implicit encoding model that supports encoding of both geometry and different types of properties (RGB, infrared, features, etc.) without requiring any training. Based on this, our framework divides the point cloud into regular grid voxels and generates a latent feature in each voxel to form a Latent Implicit Map (LIM) for geometries and arbitrary properties. Then, by fusing a local LIM frame-wisely into a global LIM, an incremental reconstruction is achieved. Encoded with corresponding types of data, our Latent Implicit Map is capable of generating continuous surfaces, surface property fields, surface feature fields, and all other possible options. To demonstrate the capabilities of our model, we implement three applications: (1) incremental reconstruction for surfaces and color (2) 2D-to-3D transfer of fabricated properties (3) open-vocabulary scene understanding by creating a text CLIP feature field on surfaces. We evaluate Uni-Fusion by comparing it in corresponding applications, from which Uni-Fusion shows high-flexibility in various applications while performing best or being competitive. The project page of Uni-Fusion is available at //jarrome.github.io/Uni-Fusion/ .

In recent years, dominant Multi-object tracking (MOT) and segmentation (MOTS) methods mainly follow the tracking-by-detection paradigm. Transformer-based end-to-end (E2E) solutions bring some ideas to MOT and MOTS, but they cannot achieve a new state-of-the-art (SOTA) performance in major MOT and MOTS benchmarks. Detection and association are two main modules of the tracking-by-detection paradigm. Association techniques mainly depend on the combination of motion and appearance information. As deep learning has been recently developed, the performance of the detection and appearance model is rapidly improved. These trends made us consider whether we can achieve SOTA based on only high-performance detection and appearance model. Our paper mainly focuses on exploring this direction based on CBNetV2 with Swin-B as a detection model and MoCo-v2 as a self-supervised appearance model. Motion information and IoU mapping were removed during the association. Our method wins 1st place on the MOTS track and wins 2nd on the MOT track in the CVPR2023 WAD workshop. We hope our simple and effective method can give some insights to the MOT and MOTS research community. Source code will be released under this git repository

Albeit being a prevalent architecture searching approach, differentiable architecture search (DARTS) is largely hindered by its substantial memory cost since the entire supernet resides in the memory. This is where the single-path DARTS comes in, which only chooses a single-path submodel at each step. While being memory-friendly, it also comes with low computational costs. Nonetheless, we discover a critical issue of single-path DARTS that has not been primarily noticed. Namely, it also suffers from severe performance collapse since too many parameter-free operations like skip connections are derived, just like DARTS does. In this paper, we propose a new algorithm called RObustifying Memory-Efficient NAS (ROME) to give a cure. First, we disentangle the topology search from the operation search to make searching and evaluation consistent. We then adopt Gumbel-Top2 reparameterization and gradient accumulation to robustify the unwieldy bi-level optimization. We verify ROME extensively across 15 benchmarks to demonstrate its effectiveness and robustness.

Large text-to-image diffusion models have achieved remarkable success in generating diverse high-quality images in alignment with text prompt used for editing the input image. But, when these models applied to video the main challenge is to ensure temporal consistency and coherence across frames. In this paper, we proposed InFusion, a framework for zero-shot text-based video editing leveraging large pre-trained image diffusion models. Our framework specifically supports editing of multiple concepts with the pixel level control over diverse concepts mentioned in the editing prompt. Specifically, we inject the difference of features obtained with source and edit prompt from U-Net residual blocks in decoder layers, this when combined with injected attention features make it feasible to query the source contents and scale edited concepts along with the injection of unedited parts. The editing is further controlled in fine-grained manner with mask extraction and attention fusion strategy which cuts the edited part from source and paste it into the denoising pipeline for editing prompt. Our framework is a low cost alternative of one-shot tuned models for editing since it does not require training. We demonstrated the complex concept editing with generalised image model (Stable Diffusion v1.5) using LoRA. Adaptation is compatible with all the existing image diffusion techniques. Extensive experimental results demonstrate the effectiveness over existing methods in rendering high-quality and temporally consistent videos.

For text-to-video retrieval (T2VR), which aims to retrieve unlabeled videos by ad-hoc textual queries, CLIP-based methods are dominating. Compared to CLIP4Clip which is efficient and compact, the state-of-the-art models tend to compute video-text similarity by fine-grained cross-modal feature interaction and matching, putting their scalability for large-scale T2VR into doubt. For efficient T2VR, we propose TeachCLIP with multi-grained teaching to let a CLIP4Clip based student network learn from more advanced yet computationally heavy models such as X-CLIP, TS2-Net and X-Pool . To improve the student's learning capability, we add an Attentional frame-Feature Aggregation (AFA) block, which by design adds no extra storage/computation overhead at the retrieval stage. While attentive weights produced by AFA are commonly used for combining frame-level features, we propose a novel use of the weights to let them imitate frame-text relevance estimated by the teacher network. As such, AFA provides a fine-grained learning (teaching) channel for the student (teacher). Extensive experiments on multiple public datasets justify the viability of the proposed method.

Image-to-image translation (I2I) aims to transfer images from a source domain to a target domain while preserving the content representations. I2I has drawn increasing attention and made tremendous progress in recent years because of its wide range of applications in many computer vision and image processing problems, such as image synthesis, segmentation, style transfer, restoration, and pose estimation. In this paper, we provide an overview of the I2I works developed in recent years. We will analyze the key techniques of the existing I2I works and clarify the main progress the community has made. Additionally, we will elaborate on the effect of I2I on the research and industry community and point out remaining challenges in related fields.

GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model, for the image to be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling the pretrained GAN models such as StyleGAN and BigGAN to be used for real image editing applications. Meanwhile, GAN inversion also provides insights on the interpretation of GAN's latent space and how the realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on its recent algorithms and applications. We cover important techniques of GAN inversion and their applications to image restoration and image manipulation. We further elaborate on some trends and challenges for future directions.

Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design three pre-training tasks: Masked Language Modeling (MLM), Image-Text Matching (ITM), and Masked Region Modeling (MRM, with three variants). Different from concurrent work on multimodal pre-training that apply joint random masking to both modalities, we use conditioned masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). Comprehensive analysis shows that conditioned masking yields better performance than unconditioned masking. We also conduct a thorough ablation study to find an optimal setting for the combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question Answering, Image-Text Retrieval, Referring Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and NLVR2.

北京阿比特科技有限公司